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Abstract: Deep Reinforcement Learning (DRL) based parameter optimization of super twisting control
(STC) for the liquid slosh control problem in a moving vehicle is proposed in this paper. The slosh control
problem, including the vehicle dynamics, represents an under-actuated nonlinear dynamical system. The
slosh phenomenon is modeled by a simple pendulum on a cart and STC had been designed for the system
when the vehicle motion is in a straight line. In this paper, a DRL framework is designed for the first time
to tune the STC parameters in order to deliver near optimal performance. The effectiveness of this
proposed learning-based approach for STC design for the slosh control problem is validated in a Python
simulation environment and compared to the simple STC design without the learning.
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1. INTRODUCTION

Sloshing is commonly defined as the movement of a free
liquid surface within its container. During the translational or
rotational accelerations of the liquid containers, a substantial
volume of liquid tends to move unrestrained in the containers,
generating the sloshing problem that can lead to system
failures. The sloshing problem frequently occurs in partially
filled containers in a variety of applications, including oil and
liquefied natural gas storage tankers, liquid cargo carriers,
liquid rocket fuel tanks, melted metal handling in steel plants,
the beverage industry, and attitude or trajectory maneuvers in
spacecraft (Abramson, 1966). It has a significant negative
impact on the performance of industrial processes and is hard
to eradicate.

Liquid fuel sloshing often has a considerable impact on the
motion of partially filled spacecraft in the presence of attitude
or trajectory maneuvers and can even cause instability
(Nichkawde, 2004; Vreeburg, 2005). Fuel slosh and its
effects on spacecraft dynamics have been studied extensively
in recent decades (Peterson and Crawley, 1989; Baozeng et
al., 2016).

Hence, it is essential to analyze and precisely characterize the
sloshing phenomenon, as well as to establish, identify, and
experimentally evaluate mathematical models of slosh that
may be employed control development.

The motion of the liquid occurs in different forms based on
the nature of the functional force, the container geometry, etc.
As a result, different sloshing phenomena arise (Abramson,
1966; Ibrahim et al., 2001), such as lateral, rotational,
swirling, or even chaotic, quasi-periodic sloshing.

The combined dynamics of slosh and vehicle form a
nonlinear under-actuated dynamical system. Underactuated
systems (Spong, 1998) are those in which the number of
configurable variables to be controlled exceeds the number of
actuators available to do so. When Petit and Rouchon (2002)

used the fluid dynamic approach to tackle the slosh control
problem, they ran into several control problems. This
approach also requires the real-time computation of complex
equations such as Navier-Stokes equations that describe fluid
motion. This can be achieved using a Computational Fluid
Dynamics (CFD) technique, but it is computationally costly
and uncontrollable (Abramson, 1966; Ibrahim et al., 2001).

A nonlinear and complicated mathematical model can be
utilized to represent the sloshing dynamics (Peterson and
Crawley, 1989), but such dynamics becomes too challenging
for the controller design. This necessitates the development
of simpler mathematical models for slosh in order to save
computational time and expense while providing controllable
models. Equivalent mechanical models are effective in this
situation as they simplify fluid dynamics equations by
presuming oscillatory point masses and rigid bodies, making
the control model easier. To represent the sloshing
phenomenon, spring-mass damper and pendulum models are
commonly used. Moving mass in these models is used to
represent the sloshing mass of the liquid. Abramson (1966)
and Ibrahim et al. (2001) discussed the pendulum model for
slosh phenomena. The use of a simple pendulum model to
represent lateral slosh, which is a type of linear and planar
slosh, has been extensively accepted and documented in the
literature (Abramson, 1966; Ibrahim et al., 2001).

Many scientists have sought to find solutions to the difficult
issues that sloshing dynamics pose. Different passive control
techniques like baffles (Abramson, 1966; Ibrahim et al,,
2001) are reported to control the sloshing effects in launch
vehicles specifically and in other applications alike.
However, it increases the system's weight and, as a result, the
cost, making it less desirable. Researchers have been
increasingly interested in active control solutions for slosh
suppression over the last two decades (Yano and Terashima,
2001; Gandhi and Duggal, 2009; Bandyopadhyay et al.,
2009b; Thakar et al., 2012; Thakar et al., 2017a).



Some have used various control schemes such as PID control
(Sira-Ramirez and Fliess, 2002), sliding mode control
(Bandyopadhyay et al., 2009a, 2009b; Thakar et al., 2013;
Kurode et al., 2013), Hoo control (Yano and Terashima,
2001), adaptive nonlinear dynamic inversion control (Weerdt
et al., 2008), linear quadratic regulator, linear quadratic
Gaussian control (De Souza and De Souza, 2014), Lyapunov-
based feedback control (Reyhanoglu and Hervas, 2013).
Because basic mechanical models are approximate models,
they necessarily produce model uncertainties and
approximated nonlinearities, requiring the use of robust
control design. SMC is a sophisticated and efficient robust
control method (Decarlo et al., 1988; Utkin, 1977), which
provides resilience against matching uncertainties and
disturbances and has been used extensively to solve the slosh
control problem. Super-twisting control (STC) based on
second order sliding mode philosophy was employed in
Thakar et al., (2017b) for slosh suppression which reduced
the problematic chattering effect of traditional first order
SMC.

1.1 Motivation

e Control systems have a deep, comprehensive, and
foundational knowledge established over the last six
decades, with a significant emphasis on decision-making
in uncertain conditions. Despite advances in several
subfields of control engineering, considerable work has
to be done to effectively address control of complex
dynamical systems in the face of rapid environmental
change and high degrees of uncertainty.

e  One of the main goals of Artificial Intelligence (Al) is to
create systems that can learn and think by themselves and
can plan activities on their own to complete a given task.
We can aspire to build much more efficient and
adaptable control systems by exploiting the latest
developments and advances in artificial intelligence
(AI), such as machine learning (ML), deep learning (DL)
and reinforcement learning (RL). To do so, we have to
specify particular goals that are currently unattainable
using conventional control methodologies but could be
reached using Al developments.

e The study and design of control systems have
traditionally relied on precise mathematical models of
the system with well-understood uncertainties. RL
approaches, on the other hand, try to directly learn
models and control actions from data and experiments.
Clearly, there is little possibility for RL in areas where
thorough classical control-oriented models are viable
and have already been constructed. However, in areas
where such detailed mathematical models do not exist,
or performance targets are defined at a high level, or the
degree of uncertainty is substantially higher with
unverified sources, or the control objectives have high
diversity, a much larger opportunity arises.

e Traditional control strategies frequently require the
domain expertise of a control engineer for parameter
tuning and other operations. For these mathematically

challenging tasks, RL can be utilized to find optimum or
near optimum solutions.

1.2 Main Contribution

e A model-free, data-driven, and self-learning DRL based
STC agent is designed for the first time for slosh container
system under diverse operating conditions.

e By interacting with a simulated Python environment of
the slosh container system, the proposed agent is trained
using Deep Deterministic Policy Gradient (DDPG)
algorithm (Lillicrap et al., 2016). The proposed DRL
agent learns the controller parameters from scratch to
solve the slosh control problem.

e For the slosh control problem, the performance of DRL-
based STC is compared with conventional STC (Thakar
etal., 2017b). The comparison is based on the second and
infinity norms of the control input and the slosh angle.

1.3 Paper Outline

The outline of the paper is as follows: The slosh control
problem statement is described in Section 2, along with the
slosh container system dynamics. The proposed DRL based
STC framework and strategy are discussed in Section 3. The
simulation results are compared in Sections 4. Finally,
Section 5 draws some conclusions.

2. PROBLEM STATEMENT

When a liquid-filled container is moved from one place to
another, the exerted force tends to stimulate the liquid and
induce sloshing. The aim of the control task in this paper is to
drive a partially filled liquid container in a straight path from
its starting position to the destination position with minimal
sloshing by a correctly predicted control input.

Fig.1. Pendulum analogy for lateral slosh control problem

The lateral slosh with container dynamics model, which was
discussed in Bandyopadhyay et al. (2009b) and Kurode,
(2009), is revisited in this paper. A simple pendulum
mathematical model is employed to model the lateral slosh in
a moving container system, as shown in Fig. 1. There are two
degrees of freedom in this lateral slosh container system
dynamics: displacement of container (y) and pendulum angle
or slosh angle (8). Unlike y, the slosh angle has no direct
input, resulting in an underactuated system. As indicated in
Fig. 1, the Liquid Container is given a horizontal controlling
force u and is anticipated to travel laterally by y distance.



The system's dynamical equations in y and 6, derived using
Euler Lagrange's formulation (Bandyopadhyay et al., 2009b),
are as follows:

M3 + mglcosf6 — myl6?sinf = u + d (1)
mglcos8y + myl26 + c6 + myglsing = 0 ()

Here, M is the total mass of the system in kg, which
comprises container base plate mass (my), container mass
(m,), slosh mass (m) and non-sloshing liquid mass ((m;).
The external disturbance of the input channel is denoted by d.
TABLE 1 contains information on the various system
parameters used in the model
(Bandyopadhyay et al., 2009b).

system dynamics

TABLE L. PARAMETERS FOR THE SLOSH CONTAINER SYSTEM
Parameters Value Unit
Slosh mass (my) 1.32 kg
Non-sloshing liquid mass ((m;) 6.0 kg
Liquid container mass (m.) 2.0 kg
Base plate mass (m,,) 1.5 kg
Total rigid mass (m,.) 9.7 kg
Pendulum length (1) 0.052126 m
Gravitational acceleration (g) 9.8 m/s?
Viscous damping coefficient (c) 3.0490e-4 kgm?/sec

3. CONTROL DEVELOPMENT

For this control problem, we need to design a controller that
provides the control force input u, allowing us to move the
container to the intended position along a straight path with
the least amount of slosh. The control input u for the system
dynamics equations (1) and (2) can be developed using DRL
based STC to obtain the desired results.

3.1 Super Twisting Control (STC)

For the linear sliding surface and super twisting control
discussed in Thakar et al. (2017b), a DRL based parameter
tuning approach is proposed in this paper, in order to obtain
performance improvement. The dynamics of the error
variables for this slosh container system can be represented
as

&y =Y—Ya, €9 =0-04,6 =y — Y4, &g = 6 — éd (3)

Here subscript ‘d’ is representing the desired value of the
variable. For this problem the desired container position is
Y4 = 175 mm and 8, and 6, should be equal to zero for
slosh minimization. The error dynamics state vector can be
represented as
[6, &, 63 64]T = [ey e'y €o E.G]T 4)
Considering system outputs §;and §,, the following is an
evident linear sliding surface.

p = c16;1¢6; (5)
where ¢; and c, are sliding surface parameters.

For finite time convergence of system trajectories to a second
order sliding set, the super twisting control developed in
Thakar et al. (2017b) is used:

1
v = —kq|p|z sign(p) — f(f k,sign(p) dt (6)

Based on the system dynamics and v, the designed control
input in Thakar et al. (2017b) is given below:
u=(cia;) (v —1) (7

where a; = andt = Z—z(p —,0;)
1

Now the goal is to use DRL to fine-tune the STC parameters
¢y, ki,and k,. Without loss of generality, c; = 1 can be
chosen. In Thakar et al. (2017b), these parameters are
designed only satisfying Lyapunov stability condition, and no
methodology for tuning these parameters to obtain optimal
performance is provided.

3.2 The Basic concept of Reinforcement Learning

RL is a type of ML that studies how Al agents should respond
to sequential decision-making problems
environment to maximize the cumulative reward (Sutton and
Barto, 2018). Along with supervised and unsupervised
learning, RL is one of three core ML paradigms. Generally,
RL agents start with no prior knowledge of the environment
and learn by trial and error, which is slow but effective. The
basic RL block diagram is shown in Fig. 2.

in a given

STATE

REWARD

ACTION

Fig.2. Reinforcement Learning block diagram

In the RL framework, the learner is known as the agent, and
the surroundings around the learner are known as the
environment. The present condition of the environment is
known as the state in RL literature, and RL agents execute
actions depending on the state and reward signals. To
evaluate how advantageous it is for the agent to be in a
specific state or to execute an action in that state, the majority
of RL algorithms employ the estimated state value function
and the state action value function. In RL, value functions are
used to estimate the optimal action selection strategy or
policy. These value functions provide a representation of
expected future rewards in an indirect manner.

Traditional tabular-based RL algorithms, such as Monte
Carlo and Temporal Difference Learning (Sutton and Barto,
2018), have several limitations. The “curse of



dimensionality” affects these methods significantly, which
means that the computational needs increase exponentially as
the number of state or action variables increases. So, we need
some more efficient RL algorithms for continuous state and
action spaces.

DNN can be used as a function approximator to address this
issue by approximating the value functions in DRL methods.
DRL algorithms take advantage of DNN's powerful feature
extraction capabilities, which eliminates the need for manual
feature extraction. For some of the most complicated
sequential decision-making problems, these advanced DRL
agents can even predict control actions based on raw visual
inputs (Mnih et al., 2015). DRL agents have achieved
superhuman performance in complex board games such as
Go (Silver et al., 2017), Chess, and Shogi.

DRL had been used to create robust autonomous controllers
that can learn optimal control actions for complicated control
engineering problems from scratch without the need for
human expertise (Duan et al., 2020). DRL is currently an
active research area, and tremendous progress has been made
in terms of advancing the field and applying it in various
challenging decision-making domains. We can use DRL to
design new architectures for robust, intelligent, and adaptive
controllers that can work across a wide range of application
domains while enhancing performance and ensuring safety.

3.3 Proposed framework for DRL based STC

When the liquid container is moving in a straight path, the
objective of this DRL-based STC agent is to provide effective
control action u such that sloshing is minimized. The
framework of the proposed DRL-based STC agent is shown
in Fig. 3.

DRL AGENT

AGENT POLICY
[y,.6,6] DDPG ALGORITHM
Slosh angle ] REWARD
Slosh angle velocity 6

ACTION
[e2, k1, k2]

STC Parameters

Container position y
Container velocity

SLOSH CONTAINER ENVIRONMENT
(Python Simulated)

Fig.3. Framework for DRL based STC

This DRL agent was trained using past experience and
rewards by interacting with the slosh container system (in a
Python simulated environment). In this architecture, the state
vector [y, y, 8, 6] is used as the state signal for the DRL
agent. Based on the initial state, the DRL agent predicts a set
of actions which are the controller parameters [c,, kq, k]
for the STC and calculates the reward function for the entire
duration of each simulation episode run of 3 seconds.

The reward function utilized for training the DRL agent is
given below.

reward function = —[4 * |[y—yu| + 0.3 * |6—0,4| +
0.3|6 — 64]] (®)

The above-mentioned reward function and its parameters
were designed based on the learning performance of many
trial runs.

Using Deep Deterministic Policy Gradient (DDPG)
algorithm, this DRL agent was trained to estimate the
suboptimal values of controller parameters [c,, kq, k]
Because the control input u is a function of these controller
parameters, the DRL agent is indirectly predicting the sub-
optimal values of control action u for slosh minimization.

The DDPG algorithm (Lillicrap et al., 2016), a value-based
DRL algorithm, is used to solve our slosh control problem.
DDPG is a deterministic policy gradient-based model-free
actor-critic (Konda and Tsitsiklis, 1999) approach. The
DDPG method expanded the basic idea of the DQN algorithm
(Mnih et al., 2015) to continuous state and action spaces, and
have solved over 20 simulated physical control problems
using high-dimensional sensory input that used the same
hyperparameters and DNN architecture (Lillicrap et al.,
2016). Below is a description of the DDPG algorithm.

DDPG Algorithm

Initialize: critic Q(x, u; wgq) and actor m(x; @) with random weights wq and
O
s target Q" and ' with weights wqr < wgq, Oy « Oy
Initialize replay memory D
for all episodes = 1,2 .........N
Initialize a random process V' for action exploration
Receive starting state x;
For all steps in the episode k = 1,2 ... ... ..K
Select action uy, = T(xy; O5) + Ny according to the current policy
and exploration noise
Execute action u; and observe the reward ry and state Xy,
Store transition (X, Uy, I, X41) in D
Sample a random minibatch of M transitions (x;, u;, Iy, Xj+1) from D
Set h; = 1y + YQ' (Xis1, ™ (Xis1; O ); 0q7)
Update critic by minimizing the loss: L = ﬁZi(hi - Q(x;,u5; mQ))z
Update the actor policy using the sampled policy gradient:
Vor] ~ + NV, Q% u; 00g)| VorTt(x; 01y,
Update target networks:
wq < Twq + (1 — Dwy
O < TO+ (1 —1)0y

X=X U=T(X;)

end for
end for

4. SIMULATION RESULTS

A slosh container environment is simulated in Python using
the mathematical model provided in Thakar et al. (2017b) for
slosh dynamics in straight line motion of liquid container. For
improved learning, the initial states of the DRL agent were
chosen at random from a practical range of all the state
variables for each simulation episode. Therefore, the
suggested learning-based controller is expected to be robust
against variations in operating conditions due to disturbances
or uncertainties. An NVIDIA GeForce GTX 1080 machine



with 12GB of RAM and 16 CPU cores is used for the entire
processing. The chosen values of STC parameters in Thakar
et al. (2017b) are ¢, =7, ky = 1.77 and k, = 4.08. Our
DRL agent was tested for STC parameter predictions for 10
test runs after 100 thousand training episodes. The predicted
values of the STC parameters by the DRL agent were nearly
identical for all test runs. The largest percentage change
discovered in the DRL agent's predictions is 3.94 %. The
DRL agent's performance in terms of slosh angle and control
effort was quite satisfactory after 50 thousand training
episodes, however the largest percentage change in the STC
parameters was substantially larger. Based on reward
function given in (8) the best possible values of the STC
parameters after 100 thousand training episodes were
obtained as ¢, = 2.8872, k; = 1.1993 and k, = 0.4696.
To replicate the steady container in the beginning of the
simulation, the initial values of all state variables y, y, 6 and
6 are fixed at zero for all test runs.

Simulation comparison results for our proposed DRL-based
STC and STC discussed in Thakar et al. (2017b) are shown
in Figs. 4a-d. TABLE II compares the required control effort
and slosh suppression results for both approaches. All these
results are compared for a 12-second test run. Our DRL-based
STC outperforms the conventional STC design in terms of
control effort requirements (||ul|, and ||u||s), as shown in
Table II. In comparison to the approach presented in Thakar
et al. (2017b), the values of ||8]|, and ||0]| also show that it
regulates sloshing in a better way.
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Fig.4. Simulation results (a) Slosh container position y, (b) Slosh
angle 6, (c) Slosh angle velocity 6, (d) Control effort u

TABLE IL RESULTS COMPARISON
Control 1612 161l [l [l
STC, Thakar et
al. (2017b) 40.59 0.22 1025.40 19.97
DRL based STC 10.41 0.10 426.14 8.66

For the sake of performance evaluation, the DRL agent's
training was stopped. Otherwise, it could continue to improve
its learning by adjusting the DNN weights parameters during
continuous on-line execution to adapt to changing operational
conditions of the environment.

5. CONCLUSIONS AND DISCUSSION

This paper proposes for the first time a DRL-based super
twisting controller that can optimize its parameters on its
own, without the need of human intervention. This DRL-
based architecture is designed to execute control actions



automatically to ensure container movement with minimal
slosh. When compared to the existing STC method, the
suggested framework performs better in a Python simulated
environment. When the environment conditions change, the
controller can readjust the control actions to optimize total
reward. The proposed DRL-based STC framework offers a
huge possibility to go beyond present adaptive control
frameworks and paradigms, achieving considerably higher
degrees of performance.
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