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Abstract: Deep Reinforcement Learning (DRL) based parameter optimization of super twisting control 
(STC) for the liquid slosh control problem in a moving vehicle is proposed in this paper. The slosh control 
problem, including the vehicle dynamics, represents an under-actuated nonlinear dynamical system. The 
slosh phenomenon is modeled by a simple pendulum on a cart and STC had been designed for the system 
when the vehicle motion is in a straight line. In this paper, a DRL framework is designed for the first time 
to tune the STC parameters in order to deliver near optimal performance. The effectiveness of this 
proposed learning-based approach for STC design for the slosh control problem is validated in a Python 
simulation environment and compared to the simple STC design without the learning.  

Keywords: Deep reinforcement learning, super twisting control, lateral slosh, under-actuated system.

 INTRODUCTION 

Sloshing is commonly defined as the movement of a free 
liquid surface within its container. During the translational or 
rotational accelerations of the liquid containers, a substantial 
volume of liquid tends to move unrestrained in the containers, 
generating the sloshing problem that can lead to system 
failures. The sloshing problem frequently occurs in partially 
filled containers in a variety of applications, including oil and 
liquefied natural gas storage tankers, liquid cargo carriers, 
liquid rocket fuel tanks, melted metal handling in steel plants, 
the beverage industry, and attitude or trajectory maneuvers in 
spacecraft (Abramson, 1966). It has a significant negative 
impact on the performance of industrial processes and is hard 
to eradicate. 

Liquid fuel sloshing often has a considerable impact on the 
motion of partially filled spacecraft in the presence of attitude 
or trajectory maneuvers and can even cause instability 
(Nichkawde, 2004; Vreeburg, 2005). Fuel slosh and its 
effects on spacecraft dynamics have been studied extensively 
in recent decades (Peterson and Crawley, 1989; Baozeng et 
al., 2016). 

Hence, it is essential to analyze and precisely characterize the 
sloshing phenomenon, as well as to establish, identify, and 
experimentally evaluate mathematical models of slosh that 
may be employed control development.  

The motion of the liquid occurs in different forms based on 
the nature of the functional force, the container geometry, etc. 
As a result, different sloshing phenomena arise (Abramson, 
1966; Ibrahim et al., 2001), such as lateral, rotational, 
swirling, or even chaotic, quasi-periodic sloshing.  

The combined dynamics of slosh and vehicle form a 
nonlinear under-actuated dynamical system. Underactuated 
systems (Spong, 1998) are those in which the number of 
configurable variables to be controlled exceeds the number of 
actuators available to do so. When Petit and Rouchon (2002) 

used the fluid dynamic approach to tackle the slosh control 
problem, they ran into several control problems. This 
approach also requires the real-time computation of complex 
equations such as Navier-Stokes equations that describe fluid 
motion. This can be achieved using a Computational Fluid 
Dynamics (CFD) technique, but it is computationally costly 
and uncontrollable (Abramson, 1966; Ibrahim et al., 2001).  

A nonlinear and complicated mathematical model can be 
utilized to represent the sloshing dynamics (Peterson and 
Crawley, 1989), but such dynamics becomes too challenging 
for the controller design. This necessitates the development 
of simpler mathematical models for slosh in order to save 
computational time and expense while providing controllable 
models. Equivalent mechanical models are effective in this 
situation as they simplify fluid dynamics equations by 
presuming oscillatory point masses and rigid bodies, making 
the control model easier. To represent the sloshing 
phenomenon, spring-mass damper and pendulum models are 
commonly used. Moving mass in these models is used to 
represent the sloshing mass of the liquid. Abramson (1966) 
and Ibrahim et al. (2001) discussed the pendulum model for 
slosh phenomena. The use of a simple pendulum model to 
represent lateral slosh, which is a type of linear and planar 
slosh, has been extensively accepted and documented in the 
literature (Abramson, 1966; Ibrahim et al., 2001). 

Many scientists have sought to find solutions to the difficult 
issues that sloshing dynamics pose. Different passive control 
techniques like baffles (Abramson, 1966; Ibrahim et al., 
2001) are reported to control the sloshing effects in launch 
vehicles specifically and in other applications alike. 
However, it increases the system's weight and, as a result, the 
cost, making it less desirable. Researchers have been 
increasingly interested in active control solutions for slosh 
suppression over the last two decades (Yano and Terashima, 
2001; Gandhi and Duggal, 2009; Bandyopadhyay et al., 
2009b; Thakar et al., 2012; Thakar et al., 2017a).  
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Some have used various control schemes such as PID control 
(Sira-Ramírez and Fliess, 2002), sliding mode control 
(Bandyopadhyay et al., 2009a, 2009b; Thakar et al., 2013; 
Kurode et al., 2013), H∞ control (Yano and Terashima, 
2001), adaptive nonlinear dynamic inversion control (Weerdt 
et al., 2008), linear quadratic regulator, linear quadratic 
Gaussian control (De Souza and De Souza, 2014), Lyapunov-
based feedback control (Reyhanoglu and Hervas, 2013). 
Because basic mechanical models are approximate models, 
they necessarily produce model uncertainties and 
approximated nonlinearities, requiring the use of robust 
control design. SMC is a sophisticated and efficient robust 
control method (Decarlo et al., 1988; Utkin, 1977), which 
provides resilience against matching uncertainties and 
disturbances and has been used extensively to solve the slosh 
control problem. Super-twisting control (STC) based on 
second order sliding mode philosophy was employed in 
Thakar et al., (2017b) for slosh suppression which reduced 
the problematic chattering effect of traditional first order 
SMC. 

1.1 Motivation 

 Control systems have a deep, comprehensive, and 
foundational knowledge established over the last six 
decades, with a significant emphasis on decision-making 
in uncertain conditions. Despite advances in several 
subfields of control engineering, considerable work has 
to be done to effectively address control of complex 
dynamical systems in the face of rapid environmental 
change and high degrees of uncertainty. 

 One of the main goals of Artificial Intelligence (AI) is to 
create systems that can learn and think by themselves and 
can plan activities on their own to complete a given task. 
We can aspire to build much more efficient and 
adaptable control systems by exploiting the latest 
developments and advances in artificial intelligence 
(AI), such as machine learning (ML), deep learning (DL) 
and reinforcement learning (RL). To do so, we have to 
specify particular goals that are currently unattainable 
using conventional control methodologies but could be 
reached using AI developments. 

 The study and design of control systems have 
traditionally relied on precise mathematical models of 
the system with well-understood uncertainties. RL 
approaches, on the other hand, try to directly learn 
models and control actions from data and experiments. 
Clearly, there is little possibility for RL in areas where 
thorough classical control-oriented models are viable 
and have already been constructed. However, in areas 
where such detailed mathematical models do not exist, 
or performance targets are defined at a high level, or the 
degree of uncertainty is substantially higher with 
unverified sources, or the control objectives have high 
diversity, a much larger opportunity arises.  

 Traditional control strategies frequently require the 
domain expertise of a control engineer for parameter 
tuning and other operations. For these mathematically 

challenging tasks, RL can be utilized to find optimum or 
near optimum solutions. 

1.2 Main Contribution 

 A model-free, data-driven, and self-learning DRL based 
STC agent is designed for the first time for slosh container 
system under diverse operating conditions. 

 By interacting with a simulated Python environment of 
the slosh container system, the proposed agent is trained 
using Deep Deterministic Policy Gradient (DDPG) 
algorithm (Lillicrap et al., 2016). The proposed DRL 
agent learns the controller parameters from scratch to 
solve the slosh control problem. 

 For the slosh control problem, the performance of  DRL-
based STC is compared with conventional STC (Thakar 
et al., 2017b). The comparison is based on the second and 
infinity norms of the control input and the slosh angle.  

1.3 Paper Outline 

The outline of the paper is as follows: The slosh control 
problem statement is described in Section 2, along with the 
slosh container system dynamics. The proposed DRL based 
STC framework and strategy are discussed in Section 3. The 
simulation results are compared in Sections 4. Finally, 
Section 5 draws some conclusions. 

 PROBLEM STATEMENT 

When a liquid-filled container is moved from one place to 
another, the exerted force tends to stimulate the liquid and 
induce sloshing. The aim of the control task in this paper is to 
drive a partially filled liquid container in a straight path from 
its starting position to the destination position with minimal 
sloshing by a correctly predicted control input.  

 

The lateral slosh with container dynamics model, which was 
discussed in Bandyopadhyay et al. (2009b) and Kurode, 
(2009), is revisited in this paper. A simple pendulum 
mathematical model is employed to model the lateral slosh in 
a moving container system, as shown in Fig. 1. There are two 
degrees of freedom in this lateral slosh container system 
dynamics: displacement of container (y) and pendulum angle 
or slosh angle (𝜃). Unlike y, the slosh angle has no direct 
input, resulting in an underactuated system. As indicated in 
Fig. 1, the Liquid Container is given a horizontal controlling 
force 𝑢 and is anticipated to travel laterally by y distance.  

 
Fig.1. Pendulum analogy for lateral slosh control problem  
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The system's dynamical equations in y and 𝜃, derived using 
Euler Lagrange's formulation (Bandyopadhyay et al., 2009b), 
are as follows:  

𝑀𝑦̈ + 𝑚௦𝑙𝑐𝑜𝑠𝜃𝜃̈ − 𝑚௦𝑙𝜃̇ଶ𝑠𝑖𝑛𝜃 = 𝑢 + 𝑑                           (1) 

𝑚௦𝑙𝑐𝑜𝑠𝜃𝑦̈ + 𝑚௦𝑙ଶ𝜃̈ + 𝑐𝜃̇ + 𝑚௦𝑔𝑙𝑠𝑖𝑛𝜃 = 0                        (2)   

Here, 𝑀 is the total mass of the system in kg, which 
comprises container base plate mass (𝑚௕), container mass 
(𝑚௖), slosh mass (𝑚௦) and non-sloshing liquid mass ((𝑚௟). 
The external disturbance of the input channel is denoted by d. 
TABLE I contains information on the various system 
parameters used in the system dynamics model 
(Bandyopadhyay et al., 2009b). 

TABLE I.   PARAMETERS FOR THE SLOSH CONTAINER SYSTEM  

Parameters Value Unit 
Slosh mass (𝑚௦) 1.32 kg 
Non-sloshing liquid mass ((𝑚௟) 6.0 kg 
Liquid container mass (𝑚௖) 2.0 kg 
Base plate mass (𝑚௕) 1.5 kg 
Total rigid mass (𝑚௥) 9.7 kg 
Pendulum length (𝑙) 0.052126 m 
Gravitational acceleration (𝑔) 9.8 m/sଶ 
Viscous damping coefficient (𝑐) 3.0490e-4 kgmଶ/sec 

 

 CONTROL DEVELOPMENT 

For this control problem, we need to design a controller that 
provides the control force input 𝑢, allowing us to move the 
container to the intended position along a straight path with 
the least amount of slosh. The control input 𝑢 for the system 
dynamics equations (1) and (2) can be developed using DRL 
based STC to obtain the desired results. 

3.1 Super Twisting Control (STC) 

For the linear sliding surface  and super twisting control  
discussed in Thakar et al. (2017b), a DRL based parameter 
tuning approach is proposed in this paper, in order to obtain 
performance improvement. The dynamics of the error 
variables for this slosh container system can be represented 
as  

𝜀௬ = 𝑦−𝑦ௗ,    𝜀ఏ = 𝜃−𝜃ௗ, 𝜀௬̇ = 𝑦̇ − 𝑦̇ௗ ,  𝜀ఏ̇ = 𝜃̇ − 𝜃̇ௗ      (3) 

Here subscript ‘d’ is representing the desired value of the 
variable. For this problem the desired container position is 

𝑦ௗ = 175 mm and 𝜃ௗ and 𝜃̇ௗ  should be equal to zero for 
slosh minimization. The error dynamics state vector can be 
represented as      
[𝛿ଵ 𝛿ଶ 𝛿ଷ 𝛿ସ]் = [𝜀௬ 𝜀௬̇ 𝜀ఏ 𝜀ఏ̇]்                       (4) 

Considering system outputs 𝛿ଵand 𝛿ଶ, the following is an 
evident linear sliding surface.  
𝜌 = 𝑐ଵ𝛿ଶ+𝑐ଶ𝛿ଵ                                                                    (5) 
where 𝑐ଵ and 𝑐ଶ are sliding surface parameters.  

For finite time convergence of system trajectories to a second 
order sliding set, the super twisting control developed in 
Thakar et al. (2017b) is used: 

𝑣 = −𝑘ଵ|𝜌|
భ

మ 𝑠𝑖𝑔𝑛(𝜌) − ∫ 𝑘ଶ𝑠𝑖𝑔𝑛(𝜌)
௧

଴
𝑑𝑡                        (6) 

Based on the system dynamics and 𝑣, the designed control 
input in Thakar et al. (2017b) is given below: 
𝑢 = (𝑐ଵ𝑎ଵ)ିଵ(𝑣 − 𝜏)                                                          (7) 

where 𝑎ଵ =
ଵ

ெି௠ೞ௖௢௦మఋయ
 and 𝜏 =

௖మ

௖భ
(𝜌 − 𝑐ଶ𝛿ଵ)                    

Now the goal is to use DRL to fine-tune the STC parameters 
𝑐ଶ, 𝑘ଵ, and  𝑘ଶ. Without loss of generality, 𝑐ଵ = 1 can be 
chosen. In Thakar et al. (2017b), these parameters are 
designed only satisfying Lyapunov stability condition, and no 
methodology for tuning these parameters to obtain optimal 
performance is provided. 

3.2 The Basic concept of Reinforcement Learning 

RL is a type of ML that studies how AI agents should respond 
to sequential decision-making problems in a given 
environment to maximize the cumulative reward (Sutton and 
Barto, 2018). Along with supervised and unsupervised 
learning, RL is one of three core ML paradigms. Generally, 
RL agents start with no prior knowledge of the environment 
and learn by trial and error, which is slow but effective. The 
basic RL block diagram is shown in Fig. 2. 

 
In the RL framework, the learner is known as the agent, and 
the surroundings around the learner are known as the 
environment. The present condition of the environment is 
known as the state in RL literature, and RL agents execute 
actions depending on the state and reward signals. To 
evaluate how advantageous it is for the agent to be in a 
specific state or to execute an action in that state, the majority 
of RL algorithms employ the estimated state value function 
and the state action value function. In RL, value functions are 
used to estimate the optimal action selection strategy or 
policy. These value functions provide a representation of 
expected future rewards in an indirect manner. 

Traditional tabular-based RL algorithms, such as Monte 
Carlo and Temporal Difference Learning (Sutton and Barto, 
2018), have several limitations. The “curse of 

 

Fig.2. Reinforcement Learning block diagram 
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dimensionality” affects these methods significantly, which 
means that the computational needs increase exponentially as 
the number of state or action variables increases. So, we need 
some more efficient RL algorithms for continuous state and 
action spaces.  

DNN can be used as a function approximator to address this 
issue by approximating the value functions in DRL methods. 
DRL algorithms take advantage of DNN's powerful feature 
extraction capabilities, which eliminates the need for manual 
feature extraction. For some of the most complicated 
sequential decision-making problems, these advanced DRL 
agents can even predict control actions based on raw visual 
inputs (Mnih et al., 2015). DRL agents have achieved 
superhuman performance in complex board games such as 
Go (Silver et al., 2017), Chess, and Shogi.  

DRL had been used to create robust autonomous controllers 
that can learn optimal control actions for complicated control 
engineering problems from scratch without the need for 
human expertise (Duan et al., 2020). DRL is currently an 
active research area, and tremendous progress has been made 
in terms of advancing the field and applying it in various 
challenging decision-making domains. We can use DRL to 
design new architectures for robust, intelligent, and adaptive 
controllers that can work across a wide range of application 
domains while enhancing performance and ensuring safety. 

3.3 Proposed framework for DRL based STC  

When the liquid container is moving in a straight path, the 
objective of this DRL-based STC agent is to provide effective 
control action 𝑢 such that sloshing is minimized. The 
framework of the proposed DRL-based STC agent is shown 
in Fig. 3.  

This DRL agent was trained using past experience and 
rewards by interacting with the slosh container system (in a 
Python simulated environment). In this architecture, the state 

vector [𝑦, 𝑦̇, 𝜃, 𝜃̇] is used as the state signal for the DRL 
agent. Based on the initial state, the DRL agent predicts a set 
of actions which are the controller parameters [𝑐ଶ, 𝑘ଵ,  𝑘ଶ] 
for the STC and calculates the reward function for the entire 
duration of each simulation episode run of 3 seconds.  

The reward function utilized for training the DRL agent is 
given below. 

𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = −[4 ∗ |𝑦−𝑦ௗ| + 0.3 ∗ |𝜃−𝜃ௗ| +

0.3ห𝜃̇ − 𝜃̇ௗห]                                                                        (8) 

The above-mentioned reward function and its parameters 
were designed based on the learning performance of many 
trial runs.  

Using Deep Deterministic Policy Gradient (DDPG) 
algorithm, this DRL agent was trained to estimate the 
suboptimal values of controller parameters [𝑐ଶ, 𝑘ଵ,  𝑘ଶ]. 
Because the control input 𝑢 is a function of these controller 
parameters, the DRL agent is indirectly predicting the sub-
optimal values of control action 𝑢 for slosh minimization.  

The DDPG algorithm (Lillicrap et al., 2016), a value-based 
DRL algorithm, is used to solve our slosh control problem. 
DDPG is a deterministic policy gradient-based model-free 
actor-critic (Konda and Tsitsiklis, 1999) approach. The 
DDPG method expanded the basic idea of the DQN algorithm 
(Mnih et al., 2015) to continuous state and action spaces, and 
have solved over 20 simulated physical control problems 
using high-dimensional sensory input that used the same 
hyperparameters and DNN architecture (Lillicrap et al., 
2016). Below is a description of the DDPG algorithm. 

DDPG Algorithm 
Initialize: critic Q(x, u; ω୕) and actor π(x; Θ஠) with random weights ω୕ and 
Θ஠ 
              : target Qᇱ and πᇱ with weights ω୕ᇲ ← ω୕, Θ஠ᇲ ← Θ஠ 
Initialize replay memory 𝒟  
for all episodes = 1,2 … … … N  
      Initialize a random process 𝒩 for action exploration 
      Receive starting state xଵ 
      For all steps in the episode k = 1,2 … … … K  
            Select action u୩ = π(x୩; Θ஠) + 𝒩୩ according to the current policy      
            and exploration noise 
            Execute action u୩ and observe the reward r୩ and state x୩ାଵ 
            Store transition (x୩, u୩, r୩, x୩ାଵ) in 𝒟 
            Sample a random minibatch of M transitions (x୧, u୧, r୧, x୧ାଵ) from 𝒟 
            Set h୧ = r୧ + γQᇱ(x୧ାଵ, πᇱ(x୧ାଵ; Θ஠ᇲ); ω୕ᇲ) 

            Update critic by minimizing the loss: L =
ଵ

୑
∑ ൫h୧ − Q(x୧, u୧; ω୕)൯

ଶ

୧  

            Update the actor policy using the sampled policy gradient: 
                  ∇஀ಘJ ≈

ଵ

୑
∑ ∇୳Q(x, u; ω୕)ห

୶ୀ୶౟,୳ୀ஠(୶౟)
∇஀ಘπ(x; Θ஠)|୶౟୧  

             Update target networks: 
                                                   ω୕ᇲ ← τω୕ + (1 − τ)ω୕ᇲ  
                                                   Θ஠ᇲ ← τΘ஠ + (1 − τ)Θ஠ᇲ  
       end for   
end for 

 SIMULATION RESULTS 

 
A slosh container environment is simulated in Python using 
the mathematical model provided in Thakar et al. (2017b) for 
slosh dynamics in straight line motion of liquid container. For 
improved learning, the initial states of the DRL agent were 
chosen at random from a practical range of all the state 
variables for each simulation episode. Therefore, the 
suggested learning-based controller is expected to be robust 
against variations in operating conditions due to disturbances 
or uncertainties. An NVIDIA GeForce GTX 1080 machine 

  
 

Fig.3.  Framework for DRL based STC 
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with 12GB of RAM and 16 CPU cores is used for the entire 
processing. The chosen values of STC parameters in Thakar 
et al. (2017b) are 𝑐ଶ = 7, 𝑘ଵ = 1.77 and  𝑘ଶ = 4.08. Our 
DRL agent was tested for STC parameter predictions for 10 
test runs after 100 thousand training episodes. The predicted 
values of the STC parameters by the DRL agent were nearly 
identical for all test runs. The largest percentage change 
discovered in the DRL agent's predictions is 3.94 %. The 
DRL agent's performance in terms of slosh angle and control 
effort was quite satisfactory after 50 thousand training 
episodes, however the largest percentage change in the STC 
parameters was substantially larger.  Based on reward 
function given in (8) the best possible values of the STC 
parameters after 100 thousand training episodes were 
obtained as 𝑐ଶ = 2.8872, 𝑘ଵ = 1.1993 and  𝑘ଶ = 0.4696. 
To replicate the steady container in the beginning of the 
simulation, the initial values of all state variables 𝑦, 𝑦̇, 𝜃 and 
𝜃̇ are fixed at zero for all test runs.  

Simulation comparison results for our proposed DRL-based 
STC and STC discussed in Thakar et al. (2017b) are shown 
in Figs. 4a-d. TABLE II compares the required control effort 
and slosh suppression results for both approaches. All these 
results are compared for a 12-second test run. Our DRL-based 
STC outperforms the conventional STC design in terms of 
control effort requirements (‖𝑢‖ଶ and ‖𝑢‖ஶ), as shown in 
Table II. In comparison to the approach presented in Thakar 
et al. (2017b), the values of ‖𝜃‖ଶ and ‖𝜃‖ஶ also show that it 
regulates sloshing in a better way.  

 
TABLE II.  RESULTS COMPARISON 

Control ‖𝜃‖𝟐 ‖𝜃‖ஶ ‖𝑢‖ଶ ‖𝑢‖ஶ 

STC, Thakar et 
al. (2017b) 

 
40.59 

 
0.22 

 
1025.40 

 
19.97 

DRL based STC 10.41 0.10 426.14 8.66 

 

For the sake of performance evaluation, the DRL agent's 
training was stopped. Otherwise, it could continue to improve 
its learning by adjusting the DNN weights parameters during 
continuous on-line execution to adapt to changing operational 
conditions of the environment.  

 

 CONCLUSIONS AND DISCUSSION 

This paper proposes for the first time a DRL-based super 
twisting controller that can optimize its parameters on its 
own, without the need of human intervention. This DRL-
based architecture is designed to execute control actions 

 
             (a) 

 

 
            (c) 

 
            (d) 

Fig.4.  Simulation results (a) Slosh container position 𝑦, (b) Slosh 

angle 𝜃, (c) Slosh angle velocity 𝜃̇, (d) Control effort 𝑢 
 

 
            (b) 
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automatically to ensure container movement with minimal 
slosh. When compared to the existing STC method, the 
suggested framework performs better in a Python simulated 
environment. When the environment conditions change, the 
controller can readjust the control actions to optimize total 
reward. The proposed DRL-based STC framework offers a 
huge possibility to go beyond present adaptive control 
frameworks and paradigms, achieving considerably higher 
degrees of performance. 
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