
Reinforcement Learning Based
Stabilization of Liquid Surface in Ground

Vehicle payloads

Submitted in partial fulfilment of the requirements

of the degree of

Bachelor of Technology

by

KSHITIJ BITHEL, 18115053
KESHAV DIXIT, 18115050

Supervisor(s)

Prof. Sohom Chakrabarty

Department of Electrical Engineering

Indian Institute of Technology Roorkee

2022

Declaration

I hereby declare that the work which is presented here, entitled Reinforcement Learning Based

Stabilization of Liquid Surface in Ground Vehicle payloads, submitted in partial fulfilment of

the requirements for the award of the Degree of Bachelor of Technology in the Department of

Electrical Engineering, Indian Institute of Technology Roorkee. I also declare that I have been

doing my work from Month Year under the supervision and guidance of Prof. Sohom

Chakrabarty, Assistant Professor, Electrical Engineering Department, Indian Institute of

Technology Roorkee. The matter presented in this dissertation report has not been submitted by

me for award of any other degree of institute or any other institutes.

Date:

KSHITIJ BITHEL KESHAV DIXIT

(18115053) (18115050)

Certificate

This is to certify that the above statement made by the candidate is true to the best of my

knowledge and belief.

Signature

Prof. SOHOM CHAKRABARTY

Assistant Professor

Department of Electrical Engineering

Indian Institute of Technology Roorkee

2

Acknowledgement

We would like to take up this opportunity to express our sincere gratitude to our project guide

Prof Sohom Chakrabarty, Assistant Professor, Department of Electrical Engineering, IIT

Roorkee for his constant support and guidance throughout the course of this project, without

which it would not have been possible for us to complete this project.

We also extend our gratitude to Dr. G. N. Pillai, Professor and Head of Department, Electrical

Engineering, IIT Roorkee for constantly motivating us. We would also like to thank Prof.

Sharmili Das, Assistant Professor and Prof. Deep Kiran, Assistant Professor and Coordinators of

B. Tech Project for letting us pursue this topic for our project.

Further we would also like to thank our department for allowing us to work in the Advance

Robotics Laboratory to perform our work and build an arena for the prototype.

We would express our gratitude to our senior Mr. Ashish Shakya for his constant motivation and

guidance throughout the course of this project.

Last but not the least, we would like to acknowledge the support of ARTPARK@IISc Bangalore

for constantly providing us with the necessary support and equipments to carry on this project.

3

Abstract

Sloshing refers to the motion of the free liquid surface inside its container. It is a complex

nonlinear dynamical phenomenon that has a substantial impact on the fluid system's stability. It

affects various engineering systems and processes such as liquid storage tanks, liquid rocket fuel

tanks, molten metal handling in steel plants, robotic handling of liquids, etc. We aim to solve the

problem of minimizing slosh in Automated Ground Vehicle (AGV) payloads, i.e, stabilize the

free surface of a liquid inside a container placed as payload on an AGV, while the AGV traverses

along specified paths in a 2-D plane. For this purpose, a Deep Reinforcement Learning (DRL)

framework will be designed to tune a robust controller to control the prototype AGV and move it

to a destination point along desired 2-D paths while minimizing the slosh of the payload liquid as

well as minimizing the time taken to reach the destination.

4

Table of Contents

Abstract..…………………………………………………………………...…………………….4

List of Figures

List of Tables vi

List of Abbreviations viii

Nomenclatures ix

1 Introduction 1

2 Hardware Prototype 13

2.1 Mechanical design 14

2.1.1 Chassis 14

2.1.2 Motors 15

2.1.3 Power Circuit 16

2.2 Electronics design 17

2.2.1 Jetson Nano 17

2.2.2 Teensy 4.1 18

2.2.3 Localization and Orientation sensor 19

3 Navigation 20

3.1 Mecanum Wheel drive 20

3.1.1 Kinematic model of 4 wheel Mecanum drive robot 21

3.2 Localization 22

3.3 Controller for path Tracking 23

3.3.1 Orientation control 23

3.3.2 Drift control 23

4 Velocity control 25

4.1 Controller for Velocity control 25

4.1.1 PID Controller 25

4.1.2 Fuzzy Controller 27

5 Slosh Measurement 29

5

6 Super Testing Controller (STC) 33

6.1 Design 33

7 Reinforcement Learning 35

7.1 Definitions 36

7.2 Algorithms 38

7.2.1 Deep Deterministic Policy Gradient 39

8 Conclusion 46

References 47

6

List of Figures

Figure 1.1: Sloshing dynamics modelling using spherical pendulum

Figure 1.2: Passive Slosh Control using anti-wave Baffles

Figure 1.3: Final Prototype

Figure 2.1: Signal flow diagram

Figure 2.2: Overall schematic of the AGV

Figure 2.3: Force vectors on the Mecanum wheels

Figure 2.4: Motor with Encoder

Figure 2.5 (a): Cytron Motor Driver

Figure 2.5 (b): Li-Po battery 4500 mah

Figure 2.6: Nvidia Jetson Nano developer kit

Figure 2.7: Teensy 4.1 Pinout

Figure 2.8 (a): MPU-9250

Figure 2.8 (b): TF Mini Plus Lidar

Figure 3.1 (a): Mecanum wheel Side view

Figure 3.1 (b): Mecanum wheel bottom view

Figure 3.2: Wheels Configuration as seen from Top

Figure 3.3: AGV localizing in an Arena

Figure 3.4: Orientation controller

Figure 3.5: Drift Controller

Figure 3.6 (a): Path Tracking for Straight line Untuned

Figure 3.6 (b): Path Tracking for Straight line Tuned

Figure 3.7: Path Tracking for Sinusoidal Path

Figure 4.1: PID controller for Velocity Control

Figure 4.2: PID controller for Velocity Control with PWM Feedback

Figure 4.3: Desired velocity vs Actual Velocity curve for PID controller

Figure 4.4: Desired Velocity vs Actual velocity curve for Fuzzy controller

Figure 5.1 (a): Protocentral FDC1004 circuit board

Figure 5.1 (b): Container with capacitances

Figure 5.2 (a): Capacitance values without Shielding

7

Figure 5.2 (b): Capacitance values with Shielding

Figure 5.2 (c): Capacitance values at different water levels

Figure 5.3: Slosh Angle

Figure 5.4: Capacitance values vs Height in cm

Figure 7.1: Agent - Environment Interaction

Figure 8.1: Pendulum Analogy for Lateral Slosh Control Problem

Figure 8.2: Slosh Data recorded after quick stop for 34 runs

Figure 8.3: FFT of signal for all the runsϕ

Figure 8.4: Overall DRL Framework

Figure 8.5 (a): Position of AGV vs time

Figure 8.5 (b): Slosh angle vs time

Figure 8.6 (a): Rate of change of Slosh angle vs time

Figure 8.6 (b): Force output vs time

Figure 8.7 (a): Hardware implemented Position of AGV

Figure 8.7 (b): Hardware implemented Force output of AGV

8

List of Abbreviations

PID : Proportional, Integral, Derivative

LIDAR : Light Detection and Ranging

I2C : Inter-Integrated Circuit

ARM : Advanced RISC Machines

RISC : Reduced Instruction Set Computer

USB : Universal Serial Bus

FPU : Floating Point Unit

GPU : Graphical Processing unit

LPDDR : Low-Power Double Data Rate

PWM : Pulse Width Modulated

AGV : Automated Guided Vehicle

SiP : System in Package

UART : Universal Asynchronous Reciever-Transmitter

DRL : Deep Reinforcement Learning

STC : Super-Twisted Control

RL : Reinforcement Learning

SMC : Sliding Mode Control

SOSM : Second Order Sliding Mode

UAV : Unmanned Aerial Vehicle

DQN : Deep Q-Networks

TRPO : Trust Region Policy Optimization

DDPG : Deep Deterministic Policy Gradient

PPO : Proximal Policy Optimization

SAC : Soft Actor Critic

NFQCA : Neural Fitted Q Iteration with Continuous Actions

FFT : Fast Fourier Transform

9

Chapter 1

Introduction

During the translational or rotational accelerations of liquid containers, a substantial volume of

liquid tends to move unrestrained in the containers. The motion of the free liquid surface inside

its container in response to the force applied to the liquid directly or indirectly is called Slosh..

The motion of the liquid occurs in different forms based on the nature of the applied force, its

container geometry, etc. Accordingly, there exist various sloshing phenomena [1,2], viz., lateral,

rotational, swirling, or even chaotic, quasi-periodic. Sloshing is an unwanted phenomenon as it

can produce additional forces and moments which affect performance. The sloshing problem

frequently occurs in partially filled containers in a variety of applications, in packaging industry

it can lead to improper sealing, thereby decreasing the shelf life of the product, in liquid cargo

carriers it can cause dangerous overturns, in rockets and long range missiles sloshing can cause

additional accelerations which have to be taken care of by guidance and control system [3]. The

impact of liquid sloshing is therefore severe.

Hence, it is essential to analyze and precisely characterize the sloshing phenomenon, as well as

to establish, identify, and experimentally evaluate mathematical models of slosh that may be

employed to control development.

Modelling of slosh has been tried upon for a long time, a nonlinear and complicated

mathematical model can be utilized to represent the sloshing dynamics [4], but such dynamics

becomes too challenging for designing the controller. This necessitates the development of

simpler mathematical models for slosh in order to save computational time and expense while

providing controllable models. To represent the sloshing phenomenon, spring-mass damper and

pendulum models are commonly used (Fig 1.1) [5]. Moving mass in these models is used to

represent the sloshing mass of the liquid. We have also used the pendulum model to model our

system and implement robust control techniques for controlling the slosh.

10

Fig1.1 Sloshing dynamics modelling using spherical pendulum

Many scientists have sought to find solutions to the difficult issues that sloshing dynamics pose.

Different passive control techniques like baffles (Fig 1.2) [6,7,8] are reported to control the

sloshing effects in launch vehicles specifically and in other applications alike. However, it

increases the system's weight and, as a result, the cost, making it less desirable. Researchers have

been increasingly interested in active control solutions for slosh suppression over the last two

decades and various control techniques using approximate models have been implemented like

Sliding Mode Control[3,9,10,11], PID [12], Input Shaping [13,14] and Lyapunov-based feedback

control[15].

Fig 1.2 Passive Slosh Control using anti-wave Baffles

In this project, we have developed an Automated Ground Vehicle(AGV) prototype which has a

holonomic drive, is capable to localise itself and navigate in a 2d Arena, has the ability to

measure the slosh of the liquid placed as a payload and minimise it while navigating from one

11

point to other using a Deep Reinforcement Learning Agent in combination with robust Sliding

Mode Control. The final prototype is shown in Fig 1.3.

Fig 1.3 Final Prototype

12

Chapter 2

Hardware Prototype

An automated Guided Vehicle (AGV) prototype has been built which is capable to move

holonomically in 2-D space and localise itself within its surroundings. It also can measure 2-D

Slosh, which is needed as the feature for the Reinforcement Learning model. Different Hardware

components are used, which in union provide a hardware prototype capable of deploying

complex Control Algorithms and Intelligent Logic.

Fig 2.1 Signal flow diagram

13

Fig 2.2 Overall schematic of the AGV

2.1 Mechanical Design

2.1.1 Chassis

The kit includes dual 5mm thick acrylic sheets. It is a 4 Wheel Drive robot chassis with

Mecanum wheels which increase the maneuverability of the robot . The wheels have rollers

inclined at 45º which move independently and allow the robot to move in any direction without

changing its orientation or spin in place. The motors have rotary encoders so it can be used for

velocity feedback in order to maintain a fixed angular velocity of the wheels.

14

Fig 2.3 Force vectors on the Mecanum wheels

The force acting on a mecanum wheel is 45 degrees from the direction of the wheel. Hence

different combinations of the rotations of the wheels results in a velocity vector at different

angles. For instance if all the wheels move in the forward direction like in a case shown above,

there will be two components in the force vector of each wheel. In that case the y-component of

all the wheels has a counter pair thus nullifying its effect whereas the forces in the x-direction

add up thus providing a movement along x-direction.

2.1.2 Motors

We have used four high torque geared motors (GB37-520) for the bot. The rated power of the

motor is nearly equal to 7.2W, with a rated speed of 330 RPM. All four motors are fitted with a

semi absolute encoder. The encoder provides maximum accuracy of 1320 CPR. In all the system

provides a payload capacity of 15 Kgs.

15

Fig 2.4 Motor with Encoder

2.1.3 Power Circuit

The Motors are driven by 2 Cytron 10 Amp-30V DC motor drivers. The motor driver also offers

overcurrent protection and temperature protection. The speed signal is provided as a PWM signal

to the Motor Driver, generating output voltage for the motors. The range of the PWM signal is

from 0 to 255, the initialization signal is treated as the zero signal, and the motor output is

mapped accordingly.

(a) (b)

Fig 2.5 (a) Cytron Motor Driver, (b) Li-Po battery 4500 mah

16

The AGV is powered by a 12V 3S Lithium polymer battery with a capacity of 4500 mAh, and a

maximum continuous current rating of 35C. We are also using the same battery to power the

arduino as well by stepping it down to a regulated 5 volts DC through a Buck converter.

2.2 Electronics Design

2.2.1 Jetson Nano

The Jetson Nano developer kit (Fig 2.2) is a small powerful computer that has the power to run

multiple neural networks in parallel for applications such as image classification, object

recognition, segmentation, and speech recognition. It enables projects to incorporate artificial

intelligence algorithms for practical applications.

Its key features are a 128-core NVIDIA Maxwell GPU. Quad-core ARM A57 CPU. 4 GB 64-bit

LPDDR4. We are using it to deploy the Formulated RL agent in order to learn the parameters

from the different experiences it gains throughout the learning process.

Fig 2.6 Nvidia Jetson Nano developer kit

17

2.2.2 Teensy 4.1

The Teensy 4.1 is a microcontroller offered by a popular development platform that features an

ARM Cortex-M7 processor at 600MHz, with an NXP iMXRT1062 chip, 7536K of Flash

Memory to store the code. The Teensy 4.1 is a 40 pin chip which comes with an excellent

capability of I/O, including an Ethernet PHY, SD card socket and a USB Host port.

The processor of Teensy 4.1 includes a floating-point unit (FPU), which supports both 64-bit

“double” and 34-bit “float”. This helps in hardware-accelerated calculations of the double

functions like log(), sin(), cos().

The main advantages of Teensy 4.1 which motivated us to use it instead of the more popular

Arduino Mega ADK are the small form factor which saves us a lot of space, the Faster clock

which results in fast execution of the Instructions, and the Interrupt capability on all the digital

pins compared to only 4 present on the Arduino Mega

18

Fig 2.7 Teensy 4.1 Pinout

2.2.3 Localization and Orientation sensors

The MPU-9250 is a system in package (SiP) that combines two chips: the MPU-6050, which

includes a 3-axis gyroscope, a 3-axis accelerometer, and an onboard Digital Motion Processor

capable of processing complex Motion Fusion algorithms; and the AK8963, which is a 3-axis

digital compass in a small 3x3x1mm package. It uses the I2C address, which is 0x68 by default

and 0x69 if AD0 is pulled high. It also features an inbuilt Temperature Sensor, which is used to

compensate for reading inaccuracies caused by temperature changes.

(a) (b)

Fig 2.8 (a) MPU-9250 (b) TF Mini Plus LIDAR

For localization we are using two TF mini plus lidars. They are single point lidars with a range

from 0.1m~12m and an accuracy of 1%, frame rate from 1Hz to 1kHz. It has been designed with

an IP65 rating making it resistant to dust and water. It works on an operating voltage of 5 Volts,

and communicates with the processor using UART communication protocol.

19

Chapter 3

Navigation

The AGV developed can navigate in a 2D Arena using localisation and control techniques

described below. The navigation subsystem consists of wheel drive, localisation using sensor

fusion, and control of the robot which are explained in detail below.

3.1. Mecanum Wheel Drive

Mecanum wheel, a kind of omnidirectional wheel, is widely used nowadays in mobile

robotics[put recent references [16,17,18]. It is a conventional wheel with a series of rollers

attached to its circumference, and these rollers have an axis of rotation at 45° to the plane of the

wheel in a plane parallel to the axis of rotation of the wheel, as shown by the angle 𝛂 in Fig 3.1.

Fig 3.1 Mecanum wheel. (a) Side view and (b) bottom view [Refa]

We have used a Type-X arrangement for our AGV due to its better stiffness and dexterity over

Type-O arrangement which makes it achieve more accurate and stable omni directional

movement compared to type-O[19].

20

3.1.1 Kinematic Model Of 4 wheel Mecanum Drive Robot

The Kinematic model of the robot allows us to relate the individual wheel’s properties to the

whole robot’s properties. Fig 3.2 shows the configuration of the robot with 4 mecanum wheels.

Fig 3.2 Wheels Configuration as seen from Top

The inverse kinematic equations for the robot allow us to calculate the individual wheel’s angular

velocity as a function of the robot’s velocity. The equations are

(3.1)ω1 = 1
𝑟 (𝑣

𝑥
− 𝑣

𝑦
− (𝑙

𝑥
+ 𝑙

𝑦
)ω)

) (3.2)ω2 = 1
𝑟 (𝑣

𝑥
+ 𝑣

𝑦
+ (𝑙

𝑥
+ 𝑙

𝑦
)ω

) (3.3)ω3 = 1
𝑟 (𝑣

𝑥
+ 𝑣

𝑦
− (𝑙

𝑥
+ 𝑙

𝑦
)ω

) (3.4)ω4 = 1
𝑟 (𝑣

𝑥
− 𝑣

𝑦
+ (𝑙

𝑥
+ 𝑙

𝑦
)ω

Here, wi : angular velocity of ith wheel,

: radius of wheel, 𝑟

, : robot’s linear velocity in the reference frame shown in Fig 3.2 𝑣
𝑥

𝑣
𝑦

: robot’s angular velocity in the reference frame shown in Fig 3.2 ω

: half of the distance between front and rear wheels and𝑙
𝑥

: half of the distance between front wheels.𝑙
𝑦

For detailed Kinematic analysis, refer to [20].

21

3.2. Localisation

For Localisation, a sensor fusion algorithm consisting of 2 single point Lidars and an Inertial

Measurement Unit is used. Fig 3.3 shows the robot placed in the arena.

Fig 3.3 AGV localizing in an Arena

The pose of the robot is estimated by

(3.5)𝑥 = (𝐿𝑑𝑥 + 𝐿𝑥) * 𝑐𝑜𝑠(θ)

(3.6)𝑦 = (𝐿𝑑𝑦 + 𝐿𝑦) * 𝑐𝑜𝑠(θ)

where, (,) : Coordinates of robot𝑥 𝑦

: Yaw Angle of robotθ

: Output of Lidar in x direction 𝐿𝑥

: Output of Lidar in y direction 𝐿𝑦

: distance between center of robot and lidar in x direction𝐿𝑑𝑥

: distance between center of robot and lidar in y direction𝐿𝑑𝑦

22

3.3. Controller for Path Tracking

Path Tracking of the robot is done using a combination of 2 controllers : Orientation and Drift

Controller.

3.3.1 Orientation Control
The orientation of the robot is controlled using a PD Controller whose control diagram is shown

in Fig 3.4

Fig 3.4 Orientation Controller

3.3.2 Drift Control
The drift control is applied along the x axis, thereby controlling the x coordinate of the robot. It
is formed using a PD Controller whose Control Diagram is shown in Fig 3.5.

Fig 3.5 Drift Controller

23

By combining both the controllers, we can achieve path tracking on any predefined 2D path. We

tested the controller on straight line(Fig 3.5) and sinusoidal path(Fig 3.6) and observed that the

closed loop controller performs very well with mean squared error less than 1cm in straight line

path and of 2.71 cm in sinusoidal trajectory.

(a) (b)

Fig 3.6 Path Tracking for Straight line (a) Untuned (b) Tuned

Fig 3.7 Path Tracking for sinusoidal path

24

Chapter 4

Velocity Control

We have developed an DRL based Super Twisting Controller that minimises the slosh in a given

trajectory and minimises the time taken to cover that given path. We are restricting the AGV to

move in a straight line for initial training, thus reducing a dimension of control. As input, the

controller takes the value of slosh and returns the value of the desired velocity of the AGV. Now

the AGV must enforce this velocity. For that, we have developed a velocity control loop to

implement the velocity commands from the controller.

4.1 Controller for Velocity Control

We tried two different Algorithms for the velocity control, compared the results we got from the

two, and then used the one that gave better results. The Algorithms, results and observations

have been discussed below.

4.1.1 PID Controller

A Proportional Integral Derivative controller or PID controller is a feedback based control

mechanism which has been used widely for a long time. It provides the control output based on

the characteristics of error and has 3 tuning parameter.[21]. It calculates the error value e(t) using

the desired setpoint and a measure of the process variable and calculates the control output based

on the proportional, integral and derivative terms. The Mathematical equation for the same in the

continuous time domain is given by

(4.1)𝑢(𝑡) = 𝐾
𝑝
𝑒(𝑡) + 𝐾

𝑖
0

𝑡

∫ 𝑒(τ)𝑑τ + 𝐾
𝑑

𝑑𝑒(𝑡)
𝑑𝑡

But we are dealing with microprocessors, so the computation is discrete. In that case the

mathematical equation is given by

25

(4.2)𝑢(𝑛) = 𝐾
𝑝
𝑒(𝑛) + 𝐾

𝑖
0

𝑛

∑ 𝑒(τ)∆𝑡 + 𝐾
𝑑

(𝑒(𝑛)−𝑒(𝑛−1))
∆𝑡

For our controller the reference input u(t) is the desired velocity given by the DRL-STC agent. It

takes the velocity feedback by differentiating the LIDAR distance values thus generating the

error for the controller. The output of this controller is the PWM values to be fed to the Motor

Driver.

Fig 4.1 PID controller for velocity control

Even after a lot of tuning the AGV was not able to follow the desired velocity very accurately

and that too with a lot of oscillations.

For a better performance we used the velocity algorithm of PID control. In this algorithm instead

of using the P, I, D gains to calculate the PWM output of the controller we use the PID gains to

calculate the increment in the PWM and that increment is added to the PWM which we had

previously.

Fig 4.2 PID controller for velocity control with PWM feedback

(4.3)𝑢(𝑛) = 𝑢(𝑛 − 1) + 𝐾
𝑝
𝑒(𝑛) + 𝐾

𝑖
0

𝑛

∑ 𝑒(τ)∆𝑡 + 𝐾
𝑑

(𝑒(𝑛)−𝑒(𝑛−1))
∆𝑡

Here also the e(n) denotes the error in the reference speed and the actual speed of the AGV.

26

This controller gave better results than before but was still away from the expected observations.

This reduced the Bumpiness in the velicity and but still the actual velocity was not able to trace

the desired speed curve and became unstable at times.

Fig 4.3 Desired velocity vs Actual Velocity curve for PID controller

4.1.2 Fuzzy Controller

In contrast to classical or digital logic, which operates on discrete values of 1 or 0, a fuzzy

control system analyses analogue input values in terms of logical variables that take on

continuous values between 0 and 1. (true or false, respectively).[22,23]

27

We have used a pre-made Arduino library[24] which has been developed with the purpose of

providing an easy way to create fuzzy sets and implementing fuzzy logic for controlling the

navigation of a four wheeled mecanum drive robot.

The library has the following properties:

1. Automatically generated logic.

2. Option to choose type of membership functions (Gaussian or Triangular).

3. Freedom to define discrete sets with varying standard deviation (or size in case of triangular)

and centres.

4. Weighted average and Centroid of area techniques for defuzzification are available .

5. Centroid of the area can only be implemented for triangular sets and not for Gaussian.

After some time tuning the Fuzzy Controller parameters, we get a decent looking curve with

minor delay and oscillations.

Fig 4.4 Desired Velocity vs Actual velocity curve for Fuzzy controller

28

Chapter 5

Slosh Measurement

Sloshing refers to the motion of a free liquid surface inside its container and is a complex

nonlinear dynamical phenomenon which has a significant influence on the stability of the fluid

system. Our aim is to develop a RL agent which reduces the slosh at the time of motion and also

reduces the time of motion. For this, the first requirement is to develop a reliable slosh

measurement device.

(a) (b)
Fig 5.1 (a) Protocentral FDC1004 circuit board (b) container with capacitances

We are using Capacitive sensors to measure the height of water. We are doing this in 2

dimensions so that we know the 2-D Sloshing in the water. The capacitive sensor provides

continuous data with reliable water level tracking.

The capacitors are made from Copper Tape glued along one side of the container in pairs, so in

this way they produce a fringing magnetic field. When water is filled in the container, it changes

29

the Dielectric Medium of the capacitor thus changing the charges acquired. The reading from a

capacitive sensor cannot be directly used. There is a circuit board used for this purpose to take

the reading of the capacitive sensor and send the reading to the Arduino Mega board through

I2C. The circuit board houses FDC1004, a chip form Texas Instruments(TI) which is capable of

measuring 4 capacitance values simultaneously[ref FDC1004]. It also provides 2 shielding pins

to shield the capacitors from the external noises which may be caused due to electromagnetic

interference.

Initially it was found that there is a drift in the capacitance values. It resulted in the erroneous

functioning of the AGV. The drift was there because of the external electromagnetic

interference[ref TI guide][25]. To avoid this we used an Aluminum foil as a shield to prevent it

from the external electromagnetic interference, and connected it to the shield pin. This

eliminated the Drift in the capacitance values as shown in Fig 5.2.

(a) (b)

(c)

Fig 5.2 Capacitance values (a) without shielding, (b) with shielding, (c) at different water levels

30

In the AGV we need slosh reading in terms of the inclination of the free liquid surface. In a given

moment it is calculated by

Fig 5.3 Slosh angle

(5.1)ϕ = 𝑎𝑟𝑐𝑡𝑎𝑛(ℎ1−ℎ2
𝑑)

where, : Slosh Angleϕ

h1, h2 : height on the sides of the container

d : Diameter of the container

mr : mass of the resting liquid

ms : mass of the sloshing liquid

There needs to be a conversion from capacitance readings to height values. We see that the

height follows a linear relationship when plotted against the slosh values.

31

Fig 5.4 Capacitance values vs Height in cm

The Capacitor value follow a linear trend with height of water with R2 ~ 0.999 and the equations

for the same are

(5.2)𝐶
1

= 0. 5011ℎ − 0. 388

(5.3)𝐶
2

= 0. 4743ℎ − 0. 3505

32

Chapter 6

Super Twisting Control

Sliding mode control (SMC) is becoming a popular tool for working with UAVs and AGVs

because of its resilience and speedy convergence features, making such controllers ideal for use

in autonomous vehicles. This algorithm is inherently robust to the changes in parameters,

non-linear models, external disturbances and uncertainty. Although the first order SMC used in

the papers [26,27,28,29] yields a discontinuous control output, which cannot be applied to

actuators because of the deterrent jittering effect[30] it can create in the AGV. In a slosh

minimising problem this effect can give rise to more slosh. For this reason, here we have used

Super-Twisting control (STC) which is based on the second-order sliding

mode(SOSM)[31,32,33] for the system. This gives a continuous control signal that reduces the

jitteriness when applied to the actuator.

6.1 Design

Here we have used a DRL based parameter tuning approach for the AGV, i.e. there is a controller

which decides the velocity of the AGV based on the states it takes as feedback from the bot. The

RL agent tunes the controller's parameters to achieve the desired goal in time. The state here

comprises the displacement from the desired position, velocity, and sloshing angle.[59]

The dynamics of the error variables for this slosh container system can be represented as

(6.1)ε
𝑦

= 𝑦 − 𝑦
𝑑

(6.2)ε
θ

= θ − θ
𝑑

(6.3)ε
𝑦
˙ = 𝑦̇ − 𝑦

𝑑
˙

θ (6.4)ε
θ
˙ = θ̇ − θ

𝑑
˙

33

the subscript ‘d’ denotes the desired values. For this problem, the desired position is taken as yd=

1300 mm and , will be equal to zero for slosh minimization. The error dynamics stateθ
𝑑

θ
𝑑
˙

vector can be represented as

(6.5)[δ
1
 δ

2
 δ

3
 δ

4
]𝑇 = [ε

𝑦
 ε

𝑦
˙ ε

θ
 ε

θ
˙]𝑇

Considering system outputs and , the following is an evident linear sliding surface.δ
1

δ
2

(6.6)ρ = 𝑐
1
δ

2
+ 𝑐

2
δ

1

where c1 and c2 are sliding surface parameters.

For finite time convergence of system trajectories to a second order sliding set, the super twisting

control developed in Thakar et al. (2017b)[34] is used:

(6.7)𝑣
𝑙

=− 𝑘
1
|ρ|

1
2 𝑠𝑖𝑔𝑛(ρ) −

𝑡=0

𝑡=𝑡

∑ 𝑠𝑖𝑔𝑛(ρ) ∆𝑡

Based on the system dynamics and 𝑣, the designed control input in Thakar et al. (2017b) is given

below:

(6.8)𝑢 = (𝑐
1
𝑏

1
)−1(𝑣

𝑙
− ω

𝑙
)

where and𝑏
1

= 1

𝑀−𝑚
𝑠
𝑐𝑜𝑠2δ

3

ω
𝑙

=
𝑐

2

𝑐
1

(ρ − 𝑐
2
δ

1
)

Now after this the aim is to use the RL agent to fine tune the STC parameters c2, k1 and k2.

Without loss of generality, c1 = 1 can be chosen.

34

Chapter 7

Reinforcement Learning

Reinforcement Learning is a learning approach in which an agent interacts with its surrounding

environment by trial and error method and tries to learn an optimal behavioral strategy based on

the reward signals received from the interactions [35]. Along with supervised and unsupervised

learning, RL is one of three core Machine Learning paradigms. While traditional control

approaches tend to use detailed mathematical models of the system and environment with fairly

well-understood sources of uncertainty, RL methods aim to learn models and control actions

directly from system data and experiments, which inherently include uncertainties in the system

and disturbances acting on it. RL has recently been applied successfully on various complex

scenarios like game playing [36,37,38], AGV path planning [39], legged-robot locomotion [40],

autonomous helicopter flight [41] and many more. A recent work has used Deep RL along with

expert demonstrations and Behaviour Cloning for control of baffles for slosh suppression in a

simulated environment [42].

In RL Framework, the learner or decision maker is called the Agent and the thing it interacts

with, comprising everything outside the agent, is called the Environment. The agent learns on the

basis of its interaction with the environment to achieve a goal. More precisely , as shown in Fig

7.1, at a timestep t The agent receives the state St and reward Rt and decides the action At to be

taken. After a timestep, as a consequence of its action, the agent receives the next state St+1 and

reward Rt+1 . On the basis of this transition, the agent updates itself to perform actions that

maximise the rewards received.

35

Fig 7.1 Agent - Environment Interaction

7.1 Definitions

The tasks which can be divided into subsequences or which have a notion of terminal state are

called Episodic Tasks. In these tasks, the main motive of the RL Agent is to maximise the overall

Return Gt which is defined as

(7.1)𝐺
𝑡
 = 𝑅

𝑡
 + 𝑅

𝑡+1
 + 𝑅

𝑡+2
 + + 𝑅

𝑇

where refers to the reward received at timestep t. In other words, the cumulative reward𝑅
𝑡

matters, not the immediate reward so the algorithm should learn to cope up with delayed rewards

and not be greedy at every timestep.

A Policy is defined as a mapping from states to probabilities of selecting each possibleπ

action[35]. Any policy can be deterministic or stochastic and for an agent following a policy ,π π

the probability to take action a while being in a particular state s is defined as).π(𝑎|𝑠

The Value Function of a state s ,denoted as is defined as the expected return while starting𝑣
π
(𝑠)

from the state s and following the policy afterwards.π

(7.2)𝑣
π
(𝑠) = 𝐸

π
[𝐺

𝑡
 | 𝑆

𝑡
= 𝑠]

36

The Action Value Function for a state s and action a, denoted by is defined as the𝑞
π
(𝑠, 𝑎)

expected return while starting from state s , taking action a and following policy afterwards.π

(7.3)𝑞
π
(𝑠, 𝑎) = 𝐸

π
[𝐺

𝑡
 | 𝑆

𝑡
= 𝑠, 𝐴

𝑡
= 𝑎]

The State Transition Probability is defined as the probability of reaching state s’𝑝(𝑠', 𝑟 | 𝑠, 𝑎)

and receiving a reward r after taking action a in state s. In other words, it defines the dynamics of

the environment.

(7.4)𝑝(𝑠', 𝑟|𝑠, 𝑎) = 𝑃𝑟{ 𝑆
𝑡

= 𝑠', 𝑅
𝑡

= 𝑟 | 𝑆
𝑡−1

= 𝑠, 𝐴
𝑡−1

= 𝑎}

The Bellman Equation for value function relates the value of a state to the value of the𝑣
π
(𝑠)

successor state. It is given by

(7.5)𝑣
π
(𝑠) =

𝑎
∑ π(𝑎|𝑠)

𝑠',𝑟
∑ 𝑝(𝑠', 𝑟 | 𝑠, 𝑎)[𝑟 + γ𝑣

π
(𝑠')]

The Bellman Optimality Equation for optimal action value relates the action values for an𝑞
*

optimal policy π
*

(7.6)𝑞
*
(𝑠, 𝑎) =

𝑠',𝑟
∑ 𝑝(𝑠', 𝑟 | 𝑠, 𝑎)[𝑟 + γ 𝑚𝑎𝑥

𝑎
 𝑞

*
(𝑠', 𝑎')]

The Bellman Optimality Equation is used as an update step in many algorithms[43] which seek

to find the best action to be taken in a particular state using the action value function.

37

7.2 Algorithms

In Classical RL , initially the algorithms developed used Dynamic Programming like Value

Iteration, Policy Iteration [44] in which the dynamics of the environment or state transition

probability is known. More recently, the trend towards making the agent Tabula Rasa i.e with no

previous knowledge about environment, gave rise to algorithms like Monte Carlo and Temporal

Difference Learning [35] but these algorithms used tabular data structures to store state or action

values which becomes infeasible as the number of possible actions and states grow, the

phenomenon is termed as the “Curse of Dimensionality” .

To avoid this problem, use of function approximators was introduced, these function

approximators were used to approximate state or action value functions depending on the on

policy data recorded. Advancing forward, after the advancements in neural networks research

and due to their universal approximation property[45], neural networks began to be used as

function approximators and this gave rise to the field of Deep Reinforcement Learning.

In Deep RL, one of the first algorithms to gain fame was DQN or Deep Q Networks [46], which

displayed human level gameplay on Atari games. After this, many updates to DQN Algorithm

came in the form of Deep Recurrent DQN[47], Dueling DQN[48], Double DQN[49], and

Rainbow DQN[50] to name a few, each displaying better results in some sector of problems.

DQN was developed for discrete action spaces and therefore was not feasible to use in tasks

with continuous action spaces. This led to the development of policy gradient methods like

TRPO[51], DDPG[52], PPO[53], SAC[54] etc. which use policies to map states and actions and

iteratively update those policies to achieve better results.

In our case, the DRL Agent needs to tune the parameters of the Super Twisting Controller.

Therefore, we have to work on continuous state and action spaces and so we choose to use the

DDPG Algorithm for this task.

38

7.2.1 Deep Deterministic Policy Gradients
DDPG is a model-free, off-policy actor-critic algorithm which uses deep function approximators

that can learn policies in high-dimensional, continuous action spaces [52]. The algorithm is

described below followed by the description of key features.

Algorithm 1: Deep Deterministic Policy Gradients

Randomly initialize critic network and actor with weights and .𝑄(𝑠, 𝑎 | θ𝑄) µ(𝑠 | θ𝑄) θ𝑄 θµ

Initialize target network and with weights ← , ←𝑄' µ' θ𝑄' θ𝑄 θµ' θµ

Initialize replay buffer R

for episode = 1, M do

Initialize a random process for action exploration𝑁

Receive initial observation state 𝑠
1

for t = 1, T do

Select action | according to the current policy and exploration noise𝑎
𝑡

= µ(𝑠
𝑡

θµ) + 𝑁
𝑡

Execute action and observe reward and observe new state𝑎
𝑡

𝑟
𝑡

𝑠
𝑡+1

Store transition in R(𝑠
𝑡
, 𝑎

𝑡
, 𝑟

𝑡
, 𝑠

𝑡+1
)

Sample a random minibatch of transitions from R𝑁 (𝑠
𝑖
, 𝑎

𝑖
, 𝑟

𝑖
, 𝑠

𝑖+1
)

Set 𝑦
𝑖
 = 𝑟

𝑖
+ γ𝑄'(𝑠

𝑖+1
, µ'(𝑠

𝑖+1
| θµ')|θ𝑄')

Update critic by minimizing the loss : 𝐿 = 1
𝑁

𝑖
∑(𝑦

𝑖
− 𝑄(𝑠

𝑖
, 𝑎

𝑖
|θ𝑄))2

Update the actor policy using the sampled policy gradient:

∇
θµ 𝐽 ≈ 1

𝑁
𝑖

∑ ∇
𝑎
𝑄(𝑠, 𝑎|θ𝑄)|

𝑠=𝑠
𝑖
,𝑎 =µ(𝑠

𝑖
)
∇

θµ µ(𝑠|θµ))2

Update the target networks : θ𝑄' ← τθ𝑄 + (1 − τ)θ𝑄'

θµ' ← τθµ + (1 − τ)θµ'

end for
end for

39

Key Features

● Actor Critic Approach : To implement Q-learning on continuous action spaces, we need

to optimise at every step to find the greedy policy, which is very slow for large𝑎
𝑡

unconstrained function approximators. So, DDPG uses an actor-critic approach based on

the DPG Algorithm[55]. It consists of an actor function which deterministicallyµ(𝑠|θµ)

maps states to specific actions and the critic function which estimates the action𝑄(𝑠, 𝑎)

value and learns using the Bellman Equation (Eqn 7.6).

● Batch Learning : Introducing non-linear function approximators is essential for

generalising on large state spaces but they don’t guarantee convergence. Also, for making

the algorithm hardware efficient, it’s better to learn in batches than online. So, similar to

NFQCA[56], DDPG also uses batch learning for stability, which is intractable for large

networks.

● Replay Buffer : Most of the optimisation algorithms in Deep Learning assume that the

samples are independent and identically distributed but that’s not the case while learning

as the samples are temporally correlated. So, like DQN, DDPG uses a replay buffer,

which stores the tuples and at each timestep, a mini-batch is uniformly(𝑠
𝑡
, 𝑎

𝑡
, 𝑟

𝑡
, 𝑠

𝑡+1
)

sampled from the buffer to update the actor and critic networks.

● Target Networks : While computing the loss function for updating the critic, using the

same critic network to provide target value can lead to divergence. Therefore, similar to

DQN, DDPG uses target networks for both actor and critic whose weights are updated

using “soft” target updates unlike directly copying weights [46]. The weights of target

network slowly track the learned network using withθ' ← τθ + (1 − τ)θ' τ ≪ 1

● Batch Normalization : While learning from low-dimensional features, different

components may have different physical units, which can increase difficulty in learning.

Using the Deep learning technique of Batch Normalization[57], each dimension of the

samples in a mini-batch are normalized to have unit mean and variance which removes

the need to manually ensure if the units are within a set range.

● Exploration : DDPG uses an additional noise process which is added to the actor𝑁

policy to get the exploration policy |µ'(𝑠
𝑡
) = µ(𝑠

𝑡
θ

𝑡
µ) + 𝑁

𝑡

40

Chapter 8

RL Implementation

We have implemented DRL in combination with STC in simulation and on hardware. A simple

pendulum analogy is used to model the lateral slosh dynamics for a container with a mobile base

moving in a straight line [bandopadhyay] as shown in Fig 8.1. The combined system has 2

Degrees of Freedom, the displacement of the container, y and the lateral slosh angle, but onlyθ

the displacement of the container is controllable giving rise to an underactuated system. The

system’s dynamical equations derived using Euler-Lagrange’ formulation[] are :

(8.1)𝑀𝑦 ¨ + 𝑚
𝑠
𝑙𝑐𝑜𝑠θθ̈ − 𝑚

𝑠
𝑙 θ̇

2
𝑠𝑖𝑛θ = 𝑢 + 𝑑

(8.2)𝑚
𝑠
𝑙𝑐𝑜𝑠θ𝑦̈ + 𝑚

𝑠
𝑙2θ̈ + 𝑐θ̇ + 𝑚

𝑠
𝑔𝑙𝑠𝑖𝑛θ = 0

Where, M : Total Mass of the system

: Mass of displaced liquid𝑚
𝑠
: Length of pendulum 𝑙

c : Viscous Damping Coefficient

u : Horizontal Force Applied on the container

g : Gravitational Acceleration

d : External Disturbance

Fig 8.1 Pendulum Analogy for Lateral Slosh Control Problem

41

8.1 Parameter Estimation

To model the hardware prototype using the simple pendulum model, we need to estimate the

parameters required in the dynamics[Eqn 8.1,Eqn 8.2] and controller equations.

For this, we have used the Translational Excitation and Quick Stop strategy[58]. The AGV is

given a constant speed and stopped suddenly, emulating an impulsive behaviour. After getting

stopped quickly, the motion of the sloshing liquid will be free under-damped oscillations. This

motion is assumed to be viscously damped and is given by

(8.3)ϕ = 𝐶
1
𝑒

−ζω
𝑛
𝑡
𝑐𝑜𝑠(1 − ζ2ω

𝑛
𝑡 + ψ)

with initial condition at quick stop ().θ̇ = 0 𝑡 = 0

The data was recorded for 34 runs, which is shown in Fig 8.2. To obtain the natural frequency

and Viscous Damping Coefficient, the damped frequency and the decay of the resulting

waveform were used. The damped frequency of oscillation was calculated by taking the Fast

Fourier Transform of the signal. As can be seen in Fig 8.3 , the FFT of all the individual runs

have peak at nearly the same frequency, the final damped frequency is the average of all theω
𝑑

frequencies, which came out to be 2.74 Hz. The length of the pendulum can be found from the

natural frequency usingω
𝑛

(8.4)ω
𝑛

= 𝑔
𝑙

𝑝𝑒

Fig 8.2 Slosh Data recorded after quick stop for 34 runs

42

Fig 8.3 FFT of signal for all the runsϕ

After Calculation, the final values calculated are listed in Table 8.1

Parameters Value

Slosh mass ()𝑚
𝑠

0.375 kg

Total Mass (M) 2.7 kg

Length of Pendulum ()𝑙 0.0328 m

Gravitational Acceleration (g) 9.8 m/s2

Viscous Damping Coefficient (c) 0.000279 kgm2/sec

Table 8.1 Estimated Parameters for AGV

43

Using the estimated parameters in the simulation dynamics, the DDPG Agent was trained for 10

thousand episodes using the framework shown in Fig 8.4. An NVIDIA GeForce GTX 1080

machine with 12GB RAM and 16 core CPU is used for the entire processing. The agent was

subjected to 10 test runs for predicting the STC parameters with random starting states within a

predefined range, the output parameters were nearly identical with the largest change being

3.94%. The predicted parameters after training that gave the best results were

[𝐶1, 𝐾1, 𝐾2] = [2. 1309, 1. 6884, 0. 9694]

The results for the same are shown in Fig 8.5.

Fig 8.4 Overall DRL Framework

(a) (b)

Fig 8.5 (a) Position of AGV vs time, (b) Slosh angle vs time

44

(a) (b)

Fig 8.6 (a) Rate of change of Slosh angle vs time, (b) Force output vs time

(a) (b)

Fig 8.7 Hardware implemented results (a) Position of AGV, (b) Force output of AGV

45

Chapter 9

Conclusion

An AGV prototype is built which can be used as a research testbed to implement different

control algorithms for research in Slosh Control. The prototype is capable of measuring 2-D

slosh, navigate in 2-D Arena, implementing velocity control, and implement compute intensive

control algorithms on hardware. A slosh measurement system is developed using non-invasive

capacitive water level sensing, which records the slosh in 2-D. The system is modelled using a

simple pendulum based model and the model parameters are estimated on hardware using the

given procedure ,which come out in the desired range. Using the estimated model, a Super

Twisting Controller is implemented which provides robustness to the control system. A Deep

Reinforcement Learning Agent is designed using Deep Deterministic Policy Gradient Algorithm

to tune the parameters of STC which is a first of its kind implementation of DRL in the area of

slosh control. The DRL Agent provides appreciable results in the simulation which when

implemented on hardware results in a performance

In Future, the DRL agent can be trained directly on hardware to eradicate the errors due to

modelling and different algorithms like SAC, PPO can be implemented which have shown better

results on hardware tasks.

46

References

[1] H. N. Abramson, “The dynamic behavior of liquids in moving containers,Technical

Report, NASA, Washington, DC, USA,” 1966.

[2] R. A. Ibrahim, V. N. Pilipchuk, and T. Ikeda, “Recent Advances in Liquid Sloshing

Dynamics,” Appl. Mech. Rev., vol. 54, pp. 133–199, 2001.

[3] B. Bandyopadhyay, P. S. Gandhi, and S. Kurode, “Sliding Mode Observer Based Sliding

Mode Controller for Slosh-Free Motion Through PID Scheme,” IEEE Transactions on

Industrial Electronics, vol. 56, no. 9, pp. 3432–3442, 2009.

[4] L. D. Peterson, E. F. Crawley, and R. J. Hansman, “Nonlinear fluid slosh coupled to the

dynamics of a spacecraft,” AIAA Journal, vol. 27, no. 9, pp. 1230–1240, Sep. 1989, doi:

10.2514/3.10250.

[5] L. Moriello, L. Biagiotti, C. Melchiorri, and A. Paoli, “Manipulating liquids with robots: A

sloshing-free solution,” Control Engineering Practice, vol. 78, pp. 129–141, Sep. 2018,

doi: 10.1016/j.conengprac.2018.06.018.

[6] H. N. Abramson, J. Ransleben, and Guido E., “SOME STUDIES OF A FLOATING LID

TYPE DEVICE FOR SUPPRESSION OF LIQUID SLOSHING IN RIGID

CYLINDRICAL TANKS,” Defense Technical Information Center, Fort Belvoir, VA, May

1961. Accessed: Apr. 27, 2022. [Online]. Available: http://dx.doi.org/10.21236/ad0612785

[7] R. A. Ibrahim, V. N. Pilipchuk, and T. Ikeda, “Recent Advances in Liquid Sloshing

Dynamics,” Applied Mechanics Reviews, vol. 54, no. 2, pp. 133–199, Mar. 2001, doi:

10.1115/1.3097293.

[8] T. Kandasamy, “An Analysis of Baffles Designs for Limiting Fluid Slosh in Partly Filled

Tank Trucks~!2009-10-29~!2010-04-21~!2010-07-23~!,” The Open Transportation

Journal, vol. 4, no. 1, pp. 23–32, Jul. 2010, doi: 10.2174/1874447801004010023.

[9] S. Kurode, S. Spurgeon, B. Bandyopadhyay, and P. S. Gandhi, “Sliding mode control for

slosh-free motion using a nonlinear sliding surface,” IEEE/ASME Trans. Mechatronics,

vol. 18, pp. 714–724, 2013.

[10] S. Kurode, B. Bandyopadhyay, and P. S. Gandhi, “Sliding mode control for slosh-free

motion of a container using partial feedback linearization,”in Proc. Int. Workshop Variable

Struct. Syst., Antalya, Turkey, 2008, pp. 367–372.

47

http://dx.doi.org/10.21236/ad0612785

[11] H. Richter, “Motion control of a container with slosh: constrained sliding mode approach,”

J. Dyn. Syst., Meas., Control, vol. 132, pp. 1–10, 2010.

[12] H. Sira-Ramirez, “A flatness based generalized PI control approach to liquid sloshing

regulation in a moving container,” in Proc. Amer. Control Conf., Anchorage, AK, USA,

2002, pp. 2909–2914

[13] B. Pridgen, K. Bai, and W. Singhose, “Slosh suppression by robust input shaping,”. 49th

IEEE Conference on Decision and Control (CDC), 2010

[14] A. Aboel-Hassan, M. Arafa, and A. Nassef, “Design and optimization of input shapers for

liquid slosh suppression,” Journal of Sound and Vibration, vol. 320, no. 1–2, pp. 1–15,

2009.

[15] M. Reyhanoglu and J. R. Hervas, “Nonlinear modeling and control of slosh in liquid

container transfer via a PPR robot,” Commun. Nonlinear Sci. Numer. Simul., vol. 18, no.

6, pp. 1481–1490, 2013

[16] P. S. Yadav, V. Agrawal, J. C. Mohanta, and M. D. Faiyaz Ahmed, “A robust sliding mode

control of mecanum wheel-chair for trajectory tracking,” Materials Today: Proceedings,

vol. 56, pp. 623–630, 2022, doi: 10.1016/j.matpr.2021.12.398.

[17] J. E. Mohd Salih, M. Rizon, and S. Yaacob, “Designing Omni-Directional Mobile Robot

with Mecanum Wheel,” American Journal of Applied Sciences, vol. 3, no. 5, pp.

1831–1835, May 2006, doi: 10.3844/ajassp.2006.1831.1835.

[18] R. Xin, Z. Zou, and W. Mu, “A Design of Hull Coating Robot Based on Mecanum Wheel

and Electromagnet,” Dec. 2019. Accessed: Apr. 28, 2022. [Online]. Available:

http://dx.doi.org/10.1109/icicas48597.2019.00151

[19] C. He,D. Wu,K. Chen, F. Liu, N. Fan, “Analysis of the Mecanum Wheel Arrangement of

an Omnidirectional Vehicle,”. Proceedings : Journal of Mechanical Engineering Science

1989-1996 (vols 203-210) , 2019, vol. 233, pp. 5329–5340

[20] H. Taheri, B. Qiao, and N. Ghaeminezhad, “Kinematic Model of a Four Mecanum

Wheeled Mobile Robot,” International Journal of Computer Applications, vol. 113, no. 3,

pp. 6–9, Mar. 2015, doi: 10.5120/19804-1586.

48

http://dx.doi.org/10.1109/icicas48597.2019.00151

[21] S. Bhagwan, A. Kumar, J.K.Soni,” A Review on: PID Controller,” ,International Journal

on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE), vol 3, issue

2, pp. 17-22, Feb 2016.

[22] Pedrycz, Witold (1993). Fuzzy control and fuzzy systems (2 ed.). Research Studies Press

Ltd.

[23] Hájek, Petr (1998). Metamathematics of fuzzy logic (4 ed.). Springer Science & Business

Media.

[24] “Implementation-of-Fuzzy-Logic.pdf,” Google Docs.

https://drive.google.com/file/d/0B_0wpY02867rT3Nyd19QMVE0S2c/view?resourcekey=

0-_Oqm9L4KCacRW0ReUDYIrw .

[25] David Wang, “FDC1004: Basics of capacitive sensing and its applications”. Application

Report by Texas Instruments.

https://www.ti.com/lit/an/snoa927a/snoa927a.pdf?ts=1651139350960

[26] Bandyopadhyay, B., Gandhi, P.S., Kurode, S.: ‘Sliding mode observer based sliding mode

controller for slosh-free motion through PID scheme’, IEEE Trans. Ind. Electron., 2009,

56, (9), pp. 3432–3442

[27] Kurode, S., Spurgeon, S., Bandyopadhyay, B., et al.: ‘Sliding mode control for slosh-free

motion using nonlinear sliding surface’, IEEE/ASME Trans. Mechatron., 2013, 18, (2), pp.

714–724

[28] Thakar, P.S., Bandyopadhyay, B., Gandhi, P.S.: ‘Sliding mode control for an underactuated

slosh-container system using nonlinear model’, Int. J. Adv. Mechatron. Syst., 2013, 5, (5),

pp. 335–344

[29] Thakar, P.S., Bandyopadhyay, B., Gandhi, P.S.: ‘Sliding Mode control for a class of

underactuated systems using feedforward normal form: a sloshcontainer system’. 13th Int.

Workshop Var. Struct. Syst. (VSS), Nantes, France, 2014, pp. 1–6

[30] Utkin, V.I.: ‘Sliding modes in control optimization’ (Springer, 1992)

[31] Levant, A.: ‘Principles of 2-sliding mode design’, Automatica, 2007, 43, (4), pp. 576–586

[32] Shtessel, Y., Edwards, C., Fridman, L., et al.: ‘Sliding mode control and observation’

(Birkhuser, 2014)

49

https://drive.google.com/file/d/0B_0wpY02867rT3Nyd19QMVE0S2c/view?resourcekey=0-_Oqm9L4KCacRW0ReUDYIrw
https://drive.google.com/file/d/0B_0wpY02867rT3Nyd19QMVE0S2c/view?resourcekey=0-_Oqm9L4KCacRW0ReUDYIrw
https://www.ti.com/lit/an/snoa927a/snoa927a.pdf?ts=1651139350960

[33] Moreno, J.A., Osorio, M.: ‘Strict Lyapunov functions for the super-twisting algorithm’,

IEEE Trans. Autom. Control, 2012, 57, (4), pp. 1035–1040

[34] Thakar, P. S., Bandyopadhyay, B. and Gandhi, P. (2017b). Improved output-feedback

second order sliding mode control design with implementation for underactuated

slosh-container system having confined track length, IET Control Theory and

Applications, 11(8), 1316–1323.

[35] R. S. Sutton and A. G. Barto, Reinforcement Learning An Introduction. Cambridge, MA,

USA: MIT Press, 2018

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, C. Sadik, I.

Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg & D. Hassabis, “Human-level

control through deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[37] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.

Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel

& D. Hassabis , “Mastering the game of Go with deep neural networks and tree search,”

Nature, vol. 529, pp.484–489, 2016.

[38] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.

Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T.

Graepel & D. Hassabis , “Mastering the game of Go without human knowledge,” Nature,

vol. 550, pp. 354–359, 2017.

[39] X. Guo, Z. Ren, Z. Wu, J. Lai, D. Zeng, and S. Xie, “A Deep Reinforcement Learning

Based Approach for AGVs Path Planning,” in Chinese Automation Congress (CAC),

Shanghai, China, Nov. 2020.

[40] J. Yue, “Learning Locomotion For Legged Robots Based on Reinforcement Learning: A

Survey,” in International Conference on Electrical Engineering and Control Technologies

(CEECT), 2020.

[41] A. Coates, P. Abbeel, and A. Y. Ng, “Autonomous Helicopter Flight Using Reinforcement

Learning,” in Encyclopedia of Machine Learning and Data Mining, Boston, MA: Springer

US, 2017, pp. 75–85.

50

[42] Y. Xie and X. Zhao, “Sloshing suppression with active controlled baffles through deep

reinforcement learning–expert demonstrations–behavior cloning process,” Physics of

Fluids, vol. 33, no. 1, p. 017115, 2021.

[43] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3–4, pp.

279–292, May 1992, doi: 10.1007/bf00992698.

[44] R. A. Howard, Dynamic programming and Markov processes. 1960.

[45] A. N. Gorban and D. C. Wunsch, "The general approximation theorem," 1998 IEEE

International Joint Conference on Neural Networks Proceedings. IEEE World Congress on

Computational Intelligence (Cat. No.98CH36227), 1998, pp. 1271-1274 vol.2, doi:

10.1109/IJCNN.1998.685957.

[46] V. Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra and Martin A. Riedmiller. “Playing Atari with Deep Reinforcement Learning.”

ArXiv abs/1312.5602 (2013):

[47] M. Hausknecht ,P. Stone, “Deep Recurrent Q-Learning for Partially Observable MDPs”,

07,2015

[48] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, N. De Freitas, ‘Dueling

Network Architectures for Deep Reinforcement Learning’, Proceedings of the 33rd

International Conference on International Conference on Machine Learning - Volume 48,

2016.

[49] H. van Hasselt, A. Guez, D. Silver, ‘Deep Reinforcement Learning with Double

Q-Learning’, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016

[50] M. Hessel , ‘Rainbow: Combining Improvements in Deep Reinforcement Learning’,

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth

Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium

on Educational Advances in Artificial Intelligence, 2018.

[51] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, ‘Trust Region Policy

Optimization’, Proceedings of the 32nd International Conference on Machine Learning,

07--09 Jul 2015, τ. 37, 1889–1897.

[52] T. P. Lillicrap , ‘Continuous control with deep reinforcement learning’, CoRR, τ.

abs/1509.02971, 2016.

51

[53] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, ‘Proximal Policy

Optimization Algorithms’, 07 2017.

[54] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, ‘Soft Actor-Critic: Off-Policy Maximum

Entropy Deep Reinforcement Learning with a Stochastic Actor’, ICML, 2018.

[55] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, ‘Deterministic Policy

Gradient Algorithms’, Proceedings of the 31st International Conference on International

Conference on Machine Learning - Volume 32, 2014.

[56] Hafner, R., Riedmiller, M. Reinforcement learning in feedback control. Mach Learn 84,

137–169 (2011). https://doi.org/10.1007/s10994-011-5235-x

[57] Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[58] D. Odhekar, P. Gandhi, and K. Joshi, “Novel Methods for Slosh Parameter Estimation

Using Pendulum Analogy,” Jun. 2005. Accessed: Apr. 28, 2022. [Online]. Available:

http://dx.doi.org/10.2514/6.2005-5923

[59] A. K. Shakya, K. Bithel, G. N. Pillai and S. Chakrabarty, “Deep Reinforcement Learning

based Super Twisting Controller for Liquid Slosh Control Problem”, in Advances in

control and Optimization of Dynamical Sytems - 7th ACODS, Feb. 2022.

52

https://doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.2514/6.2005-5923

