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Abstract

Sloshing refers to the motion of the free liquid surface inside its container. It is a complex
nonlinear dynamical phenomenon that has a substantial impact on the fluid system's stability. It
affects various engineering systems and processes such as liquid storage tanks, liquid rocket fuel
tanks, molten metal handling in steel plants, robotic handling of liquids, etc. We aim to solve the
problem of minimizing slosh in Automated Ground Vehicle (AGV) payloads, i.e, stabilize the
free surface of a liquid inside a container placed as payload on an AGV, while the AGV traverses
along specified paths in a 2-D plane. For this purpose, a Deep Reinforcement Learning (DRL)
framework will be designed to tune a robust controller to control the prototype AGV and move it
to a destination point along desired 2-D paths while minimizing the slosh of the payload liquid as

well as minimizing the time taken to reach the destination.
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Chapter 1

Introduction

During the translational or rotational accelerations of liquid containers, a substantial volume of
liquid tends to move unrestrained in the containers. The motion of the free liquid surface inside
its container in response to the force applied to the liquid directly or indirectly is called Slosh..
The motion of the liquid occurs in different forms based on the nature of the applied force, its
container geometry, etc. Accordingly, there exist various sloshing phenomena [1,2], viz., lateral,
rotational, swirling, or even chaotic, quasi-periodic. Sloshing is an unwanted phenomenon as it
can produce additional forces and moments which affect performance. The sloshing problem
frequently occurs in partially filled containers in a variety of applications, in packaging industry
it can lead to improper sealing, thereby decreasing the shelf life of the product, in liquid cargo
carriers it can cause dangerous overturns, in rockets and long range missiles sloshing can cause
additional accelerations which have to be taken care of by guidance and control system [3]. The

impact of liquid sloshing is therefore severe.

Hence, it is essential to analyze and precisely characterize the sloshing phenomenon, as well as
to establish, identify, and experimentally evaluate mathematical models of slosh that may be

employed to control development.

Modelling of slosh has been tried upon for a long time, a nonlinear and complicated
mathematical model can be utilized to represent the sloshing dynamics [4], but such dynamics
becomes too challenging for designing the controller. This necessitates the development of
simpler mathematical models for slosh in order to save computational time and expense while
providing controllable models. To represent the sloshing phenomenon, spring-mass damper and
pendulum models are commonly used (Fig 1.1) [5]. Moving mass in these models is used to
represent the sloshing mass of the liquid. We have also used the pendulum model to model our

system and implement robust control techniques for controlling the slosh.
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Figl.1 Sloshing dynamics modelling using spherical pendulum

Many scientists have sought to find solutions to the difficult issues that sloshing dynamics pose.
Different passive control techniques like baffles (Fig 1.2) [6,7,8] are reported to control the
sloshing effects in launch vehicles specifically and in other applications alike. However, it
increases the system's weight and, as a result, the cost, making it less desirable. Researchers have
been increasingly interested in active control solutions for slosh suppression over the last two
decades and various control techniques using approximate models have been implemented like
Sliding Mode Control[3,9,10,11], PID [12], Input Shaping [13,14] and Lyapunov-based feedback
control[15].

Fig 1.2 Passive Slosh Control using anti-wave Baffles

In this project, we have developed an Automated Ground Vehicle(AGV) prototype which has a
holonomic drive, is capable to localise itself and navigate in a 2d Arena, has the ability to

measure the slosh of the liquid placed as a payload and minimise it while navigating from one

11



point to other using a Deep Reinforcement Learning Agent in combination with robust Sliding

Mode Control. The final prototype is shown in Fig 1.3.

Fig 1.3 Final Prototype

12



Chapter 2

Hardware Prototype

An automated Guided Vehicle (AGV) prototype has been built which is capable to move
holonomically in 2-D space and localise itself within its surroundings. It also can measure 2-D
Slosh, which is needed as the feature for the Reinforcement Learning model. Different Hardware
components are used, which in union provide a hardware prototype capable of deploying

complex Control Algorithms and Intelligent Logic.

Deep Reinforcement Learning Agent

Jetson Nano
(Onboard Computer)

Measured| |Reference Velocity
States

f"‘“"‘é Control Velocity

\ =

Teensy 4.1
Microcontroller

Sensors J T

Slosh Readings

k 4

Capacitance
Sensor

Motor Driver

Environment J

Fig 2.1 Signal flow diagram
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Fig 2.2 Overall schematic of the AGV

2.1 Mechanical Design

2.1.1 Chassis

The kit includes dual 5Smm thick acrylic sheets. It is a 4 Wheel Drive robot chassis with
Mecanum wheels which increase the maneuverability of the robot . The wheels have rollers
inclined at 45° which move independently and allow the robot to move in any direction without
changing its orientation or spin in place. The motors have rotary encoders so it can be used for

velocity feedback in order to maintain a fixed angular velocity of the wheels.
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Fig 2.3 Force vectors on the Mecanum wheels

The force acting on a mecanum wheel is 45 degrees from the direction of the wheel. Hence
different combinations of the rotations of the wheels results in a velocity vector at different
angles. For instance if all the wheels move in the forward direction like in a case shown above,
there will be two components in the force vector of each wheel. In that case the y-component of
all the wheels has a counter pair thus nullifying its effect whereas the forces in the x-direction

add up thus providing a movement along x-direction.

2.1.2 Motors

We have used four high torque geared motors (GB37-520) for the bot. The rated power of the
motor is nearly equal to 7.2W, with a rated speed of 330 RPM. All four motors are fitted with a
semi absolute encoder. The encoder provides maximum accuracy of 1320 CPR. In all the system

provides a payload capacity of 15 Kgs.
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M+: Motor power Line“+"
VCC: Sensor Positive 5V

A: Sensor signal line A phase
B: Sensor signal line B phase
GND: Sensor signal line*-"
M-: Motor power Line“="

Fig 2.4 Motor with Encoder
2.1.3 Power Circuit

The Motors are driven by 2 Cytron 10 Amp-30V DC motor drivers. The motor driver also offers
overcurrent protection and temperature protection. The speed signal is provided as a PWM signal
to the Motor Driver, generating output voltage for the motors. The range of the PWM signal is
from 0 to 255, the initialization signal is treated as the zero signal, and the motor output is

mapped accordingly.
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Fig 2.5 (a) Cytron Motor Driver, (b) Li-Po battery 4500 mah
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The AGV is powered by a 12V 3S Lithium polymer battery with a capacity of 4500 mAh, and a
maximum continuous current rating of 35C. We are also using the same battery to power the

arduino as well by stepping it down to a regulated 5 volts DC through a Buck converter.

2.2 Electronics Design

2.2.1 Jetson Nano

The Jetson Nano developer kit (Fig 2.2) is a small powerful computer that has the power to run
multiple neural networks in parallel for applications such as image classification, object
recognition, segmentation, and speech recognition. It enables projects to incorporate artificial

intelligence algorithms for practical applications.

Its key features are a 128-core NVIDIA Maxwell GPU. Quad-core ARM A57 CPU. 4 GB 64-bit
LPDDR4. We are using it to deploy the Formulated RL agent in order to learn the parameters

from the different experiences it gains throughout the learning process.

Fig 2.6 Nvidia Jetson Nano developer kit
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2.2.2 Teensy 4.1

The Teensy 4.1 is a microcontroller offered by a popular development platform that features an
ARM Cortex-M7 processor at 600MHz, with an NXP iMXRT1062 chip, 7536K of Flash
Memory to store the code. The Teensy 4.1 is a 40 pin chip which comes with an excellent

capability of I/O, including an Ethernet PHY, SD card socket and a USB Host port.

The processor of Teensy 4.1 includes a floating-point unit (FPU), which supports both 64-bit
“double” and 34-bit “float”. This helps in hardware-accelerated calculations of the double

functions like log(), sin(), cos().

The main advantages of Teensy 4.1 which motivated us to use it instead of the more popular
Arduino Mega ADK are the small form factor which saves us a lot of space, the Faster clock
which results in fast execution of the Instructions, and the Interrupt capability on all the digital

pins compared to only 4 present on the Arduino Mega

PWM CRX2 CSI RXI 0L D= =L T GND

PWM CTX2 MISO1 TX1 1 gl | 3.3V (250 mA max)
PWM OUT2 2 E9( | 23 A9 CRX1 MCLK1 ‘PWM
PWM LRCLK2 3 2 A8 CTX1 PWM
PWM BCLK2 _, 4 21 A7 RX5  BCLK1
PWM IN2 g5 5 () 20 A6 TX5  LRCLK1
PWM OUTID 55 6 3 19 A5 SCL  PWM
PWM OUTIA RX2 82 7 BNC | 18 A4 SDA  PWM
PWM IN1 ™@ 22 8 i 17 A3 TX4 SDA1
PWM OUT1C g5 9 () 16 A2 RX4 SCL1
PWM MQSR CS 10 )| 15 AL RX3 S/PDIFIN 'PWM
PWM CTX1 MOSI 110 j( 14 A0 TX3 S/PDIF OUT PWM
PWM MQSL  MISO ib] o B 13 o SCK PWM
3.3V I GND
PWM SCL2  TX6 A10 24 [yeey i 41 AL7
PWM SDA2 RX6 All 2503 B 40 AL6
MOSIT  A12 26 [ less ;o 39 A15 MISO1 OUTI1A
SCK1  A13 27 (] 38 A14 CS1  IN1
PWM RX7 28 L WL 37 cs PWM
PWM TX7 29 OF 36 cs PWM
CRX3 00 ¥ 135 TX8
cTX3 31 04 34  RX8
OUT1B 2 CFSFTRITIIA () 33 MCLK2 PWM
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Fig 2.7 Teensy 4.1 Pinout

2.2.3 Localization and Orientation sensors

The MPU-9250 is a system in package (SiP) that combines two chips: the MPU-6050, which
includes a 3-axis gyroscope, a 3-axis accelerometer, and an onboard Digital Motion Processor
capable of processing complex Motion Fusion algorithms; and the AK8963, which is a 3-axis
digital compass in a small 3x3xImm package. It uses the [12C address, which is 0x68 by default
and 0x69 if ADO is pulled high. It also features an inbuilt Temperature Sensor, which is used to

compensate for reading inaccuracies caused by temperature changes.

voltage
regulator

EHEDA . - : sensor
Ml K chip
i " N

@5 ADC w1 | i || | =

‘é':ﬂ'-. 'lf-n«lillllﬂ]H’
T INT o1

directional
arrows

(a) (b)
Fig 2.8 (a) MPU-9250 (b) TF Mini Plus LIDAR

For localization we are using two TF mini plus lidars. They are single point lidars with a range
from 0.1m~12m and an accuracy of 1%, frame rate from 1Hz to 1kHz. It has been designed with
an P65 rating making it resistant to dust and water. It works on an operating voltage of 5 Volts,

and communicates with the processor using UART communication protocol.
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Chapter 3

Navigation

The AGV developed can navigate in a 2D Arena using localisation and control techniques
described below. The navigation subsystem consists of wheel drive, localisation using sensor

fusion, and control of the robot which are explained in detail below.

3.1. Mecanum Wheel Drive

Mecanum wheel, a kind of omnidirectional wheel, is widely used nowadays in mobile
robotics[put recent references [16,17,18]. It is a conventional wheel with a series of rollers
attached to its circumference, and these rollers have an axis of rotation at 45° to the plane of the

wheel in a plane parallel to the axis of rotation of the wheel, as shown by the angle a in Fig 3.1.

Axis of the
— Mecanum wheel

Axis of a roller

Fig 3.1 Mecanum wheel. (a) Side view and (b) bottom view [Refa]

We have used a Type-X arrangement for our AGV due to its better stiffness and dexterity over
Type-O arrangement which makes it achieve more accurate and stable omni directional

movement compared to type-O[19].
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3.1.1 Kinematic Model Of 4 wheel Mecanum Drive Robot

The Kinematic model of the robot allows us to relate the individual wheel’s properties to the

whole robot’s properties. Fig 3.2 shows the configuration of the robot with 4 mecanum wheels.

X Fxa

Fx1 \
FYI FY=

—

w1, w2

ly
y
F
Fro X3

Fya

—

W4

Fig 3.2 Wheels Configuration as seen from Top

The inverse kinematic equations for the robot allow us to calculate the individual wheel’s angular

velocity as a function of the robot’s velocity. The equations are

- L1 —y -

wl = — (vx v, (lx + ly)oo) (3.1
- 1

w2 = (vx + v, + (lx + ly)(o) (3.2)
— 1 —

w3 = — (vx + v, (lx + ly)oo) (3.3)
- L _

w4 = - (vx v, + (lx + ly)oo) 3.4)

Here, w; : angular velocity of i wheel,

r : radius of wheel,

Vv, robot’s linear velocity in the reference frame shown in Fig 3.2

w : robot’s angular velocity in the reference frame shown in Fig 3.2

lx : half of the distance between front and rear wheels and

ly : half of the distance between front wheels.

For detailed Kinematic analysis, refer to [20].
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3.2. Localisation

For Localisation, a sensor fusion algorithm consisting of 2 single point Lidars and an Inertial

Measurement Unit is used. Fig 3.3 shows the robot placed in the arena.

1 l
P I I | l 1 I 1 | )

Fig 3.3 AGV localizing in an Arena
The pose of the robot is estimated by

x = (Ldx + Lx) * cos(0) (3.5)
y = (Ldy + Ly) * cos(0) (3.6)
where, (x,y) : Coordinates of robot

0 : Yaw Angle of robot
Lx : Output of Lidar in x direction
Ly : Output of Lidar in y direction
Ldx : distance between center of robot and lidar in x direction

Ldy : distance between center of robot and lidar in y direction
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3.3. Controller for Path Tracking

Path Tracking of the robot is done using a combination of 2 controllers : Orientation and Drift
Controller.

3.3.1 Orientation Control

The orientation of the robot is controlled using a PD Controller whose control diagram is shown

in Fig 3.4

+
Previous Error > % r = Kd
- ’ +
+ +
- . . error
Desired Orientation -@ = Kp > @ £ AGV

[ Current Yaw

IMU Sensor -t I

Fig 3.4 Orientation Controller

3.3.2 Drift Control

The drift control is applied along the x axis, thereby controlling the x coordinate of the robot. It
is formed using a PD Controller whose Control Diagram is shown in Fig 3.5.

+
Previous Error —I'@—’ Kd j
+ ] +
. . :Z ij error i i
Desired Position o £ Kp > £ AGV

[ Current Position

Lidar Sensor = J

Fig 3.5 Drift Controller
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By combining both the controllers, we can achieve path tracking on any predefined 2D path. We
tested the controller on straight line(Fig 3.5) and sinusoidal path(Fig 3.6) and observed that the
closed loop controller performs very well with mean squared error less than 1cm in straight line

path and of 2.71 cm in sinusoidal trajectory.

Untuned Distance Control tuned Distance Control

250

185 200
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105 100

65 50

(a) (b)
Fig 3.6 Path Tracking for Straight line (a) Untuned (b) Tuned
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Fig 3.7 Path Tracking for sinusoidal path
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Chapter 4

Velocity Control

We have developed an DRL based Super Twisting Controller that minimises the slosh in a given
trajectory and minimises the time taken to cover that given path. We are restricting the AGV to
move in a straight line for initial training, thus reducing a dimension of control. As input, the
controller takes the value of slosh and returns the value of the desired velocity of the AGV. Now
the AGV must enforce this velocity. For that, we have developed a velocity control loop to

implement the velocity commands from the controller.

4.1 Controller for Velocity Control

We tried two different Algorithms for the velocity control, compared the results we got from the
two, and then used the one that gave better results. The Algorithms, results and observations

have been discussed below.

4.1.1 PID Controller

A Proportional Integral Derivative controller or PID controller is a feedback based control
mechanism which has been used widely for a long time. It provides the control output based on
the characteristics of error and has 3 tuning parameter.[21]. It calculates the error value e(t) using
the desired setpoint and a measure of the process variable and calculates the control output based
on the proportional, integral and derivative terms. The Mathematical equation for the same in the

continuous time domain is given by

t
u(®) = K e(®) + K [e(®dt + K [l (4.1)
0

But we are dealing with microprocessors, so the computation is discrete. In that case the

mathematical equation is given by
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n

u(n) = K e(n) + K Ye(DAt + K ) (4.2)
0

For our controller the reference input u(t) is the desired velocity given by the DRL-STC agent. It
takes the velocity feedback by differentiating the LIDAR distance values thus generating the
error for the controller. The output of this controller is the PWM values to be fed to the Motor

Driver.

. . + Motor PWM
Desired Velocity ——» PID Controller > AGV
Actual Velocity .
Lidar Sensor -

Fig 4.1 PID controller for velocity control

Even after a lot of tuning the AGV was not able to follow the desired velocity very accurately

and that too with a lot of oscillations.

For a better performance we used the velocity algorithm of PID control. In this algorithm instead
of using the P, I, D gains to calculate the PWM output of the controller we use the PID gains to
calculate the increment in the PWM and that increment is added to the PWM which we had

previously.

Previous PWM

+ '( )

. . * New PWM
Desired Velocity ——» » PIDController ——» [ AGV
+

Actual Velocity [ ‘
idar Sensor

Fig 4.2 PID controller for velocity control with PWM feedback
n
um) = u(n — 1) + K e(n) +K, ¥ e(OAt + K A=) (4.3)
0

Here also the e(n) denotes the error in the reference speed and the actual speed of the AGV.
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This controller gave better results than before but was still away from the expected observations.
This reduced the Bumpiness in the velicity and but still the actual velocity was not able to trace

the desired speed curve and became unstable at times.

PID Control with PWM feedback

361
379
397
415
433
451
469
487

s ACtUE| = Desired

Fig 4.3 Desired velocity vs Actual Velocity curve for PID controller

4.1.2 Fuzzy Controller

In contrast to classical or digital logic, which operates on discrete values of 1 or 0, a fuzzy
control system analyses analogue input values in terms of logical variables that take on

continuous values between 0 and 1. (true or false, respectively).[22,23]
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We have used a pre-made Arduino library[24] which has been developed with the purpose of
providing an easy way to create fuzzy sets and implementing fuzzy logic for controlling the
navigation of a four wheeled mecanum drive robot.

The library has the following properties:

1. Automatically generated logic.

2. Option to choose type of membership functions (Gaussian or Triangular).

3. Freedom to define discrete sets with varying standard deviation (or size in case of triangular)
and centres.

4. Weighted average and Centroid of area techniques for defuzzification are available .

5. Centroid of the area can only be implemented for triangular sets and not for Gaussian.

After some time tuning the Fuzzy Controller parameters, we get a decent looking curve with

minor delay and oscillations.

Fuzzy controller

o ACtUa| e Desired

Fig 4.4 Desired Velocity vs Actual velocity curve for Fuzzy controller
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Chapter 5

Slosh Measurement

Sloshing refers to the motion of a free liquid surface inside its container and is a complex
nonlinear dynamical phenomenon which has a significant influence on the stability of the fluid
system. Our aim is to develop a RL agent which reduces the slosh at the time of motion and also
reduces the time of motion. For this, the first requirement is to develop a reliable slosh

measurement device.

(a) (b)
Fig 5.1 (a) Protocentral FDC1004 circuit board (b) container with capacitances

We are using Capacitive sensors to measure the height of water. We are doing this in 2
dimensions so that we know the 2-D Sloshing in the water. The capacitive sensor provides

continuous data with reliable water level tracking.

The capacitors are made from Copper Tape glued along one side of the container in pairs, so in

this way they produce a fringing magnetic field. When water is filled in the container, it changes

29



the Dielectric Medium of the capacitor thus changing the charges acquired. The reading from a
capacitive sensor cannot be directly used. There is a circuit board used for this purpose to take
the reading of the capacitive sensor and send the reading to the Arduino Mega board through
I2C. The circuit board houses FDC1004, a chip form Texas Instruments(TI) which is capable of
measuring 4 capacitance values simultaneously[ref FDC1004]. It also provides 2 shielding pins
to shield the capacitors from the external noises which may be caused due to electromagnetic

interference.

Initially it was found that there is a drift in the capacitance values. It resulted in the erroneous
functioning of the AGV. The drift was there because of the external electromagnetic
interference[ref TI guide][25]. To avoid this we used an Aluminum foil as a shield to prevent it
from the external electromagnetic interference, and connected it to the shield pin. This

eliminated the Drift in the capacitance values as shown in Fig 5.2.

Capacitor Drift(with shielding)

Capacitor Drift(without shielding)

Sample number (taken after every 15 sec)

Capacitor Sensor values

Capacitor Sensor values

005 Sample number (taken after every 15 sec)

(a) (b)

Cap Sensor data with Moving Average (window size 10)

Water Level10.5 cm

Water Level 9 cm

Water Level 7.5 cm

Water Level 6 cm

Water Level4.5 cm

b e e e e e e e e e e e e e e e e e e
: = o @ 25 : ; ; ;
ARE e g R RN AR RARAR AR 38N RcRcEEERRREREETEEERE

Sample Number (sample taken after every 20 sec)

(©)

Fig 5.2 Capacitance values (a) without shielding, (b) with shielding, (c) at different water levels
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In the AGV we need slosh reading in terms of the inclination of the free liquid surface. In a given

moment it is calculated by

h1
h2
my
o
Fig 5.3 Slosh angle
¢ = arctan(%) (5.1)
where, ¢ : Slosh Angle
hi, h2 : height on the sides of the container
d : Diameter of the container
m, : mass of the resting liquid
my : mass of the sloshing liquid

There needs to be a conversion from capacitance readings to height values. We see that the

height follows a linear relationship when plotted against the slosh values.
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Fig 5.4 Capacitance values vs Height in cm

The Capacitor value follow a linear trend with height of water with R? ~ 0.999 and the equations

for the same are
C = 0.5011hn — 0.388 (5.2)

C. = 0.4743h — 0.3505 (5.3)
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Chapter 6

Super Twisting Control

Sliding mode control (SMC) is becoming a popular tool for working with UAVs and AGVs
because of its resilience and speedy convergence features, making such controllers ideal for use
in autonomous vehicles. This algorithm is inherently robust to the changes in parameters,
non-linear models, external disturbances and uncertainty. Although the first order SMC used in
the papers [26,27,28,29] yields a discontinuous control output, which cannot be applied to
actuators because of the deterrent jittering effect[30] it can create in the AGV. In a slosh
minimising problem this effect can give rise to more slosh. For this reason, here we have used
Super-Twisting  control (STC) which is based on the second-order sliding
mode(SOSM)[31,32,33] for the system. This gives a continuous control signal that reduces the

jitteriness when applied to the actuator.
6.1 Design

Here we have used a DRL based parameter tuning approach for the AGYV, i.e. there is a controller
which decides the velocity of the AGV based on the states it takes as feedback from the bot. The
RL agent tunes the controller's parameters to achieve the desired goal in time. The state here

comprises the displacement from the desired position, velocity, and sloshing angle.[59]

The dynamics of the error variables for this slosh container system can be represented as

e, =YY, (6.1)
g, =0 -8 (6.2)
£,=Y =Y, (6.3)
e,=0-0, 6 (6.4)
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the subscript ‘d’ denotes the desired values. For this problem, the desired position is taken as y =

1300 mm and 6 I 0 4 will be equal to zero for slosh minimization. The error dynamics state

vector can be represented as

T - T
[6162 83 84] = [sysyseee] (6.5)

Considering system outputs 81 and 82, the following is an evident linear sliding surface.
p = 0182 + 0281 (6.6)

where ¢, and ¢, are sliding surface parameters.

For finite time convergence of system trajectories to a second order sliding set, the super twisting

control developed in Thakar et al. (2017b)[34] is used:

1 t=t

v, ==k |p|”sign(p) — ¥ sign(p) At (6.7)
t=0

Based on the system dynamics and v, the designed control input in Thakar et al. (2017b) is given

below:
u=(cbh) - (6.8)

1 ¢
where b = ———and w = —(p — c.6
1 M—m5005283 ! 2 (p 2 1)

Now after this the aim is to use the RL agent to fine tune the STC parameters c,, k; and k,.

Without loss of generality, ¢, = 1 can be chosen.
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Chapter 7

Reinforcement Learning

Reinforcement Learning is a learning approach in which an agent interacts with its surrounding
environment by trial and error method and tries to learn an optimal behavioral strategy based on
the reward signals received from the interactions [35]. Along with supervised and unsupervised
learning, RL is one of three core Machine Learning paradigms. While traditional control
approaches tend to use detailed mathematical models of the system and environment with fairly
well-understood sources of uncertainty, RL methods aim to learn models and control actions
directly from system data and experiments, which inherently include uncertainties in the system
and disturbances acting on it. RL has recently been applied successfully on various complex
scenarios like game playing [36,37,38], AGV path planning [39], legged-robot locomotion [40],
autonomous helicopter flight [41] and many more. A recent work has used Deep RL along with
expert demonstrations and Behaviour Cloning for control of baffles for slosh suppression in a

simulated environment [42].

In RL Framework, the learner or decision maker is called the Agent and the thing it interacts
with, comprising everything outside the agent, is called the Environment. The agent learns on the

basis of its interaction with the environment to achieve a goal. More precisely , as shown in Fig

7.1, at a timestep ¢ The agent receives the state S, and reward R, and decides the action 4, to be
taken. After a timestep, as a consequence of its action, the agent receives the next state S, ; and

reward R,.; . On the basis of this transition, the agent updates itself to perform actions that

maximise the rewards received.
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state reward action
S, R, A,

S.. | Environment |«

Fig 7.1 Agent - Environment Interaction

7.1 Definitions

The tasks which can be divided into subsequences or which have a notion of terminal state are

called Episodic Tasks. In these tasks, the main motive of the RL Agent is to maximise the overall

Return G; which is defined as

G.=R +R_ +R_ + ..+R (7.1)

where Rt refers to the reward received at timestep t. In other words, the cumulative reward

matters, not the immediate reward so the algorithm should learn to cope up with delayed rewards

and not be greedy at every timestep.

A Policy m is defined as a mapping from states to probabilities of selecting each possible
action[35]. Any policy 1 can be deterministic or stochastic and for an agent following a policy T,

the probability to take action a while being in a particular state s is defined as 1t(als).
The Value Function of a state s ,denoted as vn(s) is defined as the expected return while starting
from the state s and following the policy T afterwards.

vn(s) = En[Gt|St = 5] (7.2)
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The Action Value Function for a state s and action a, denoted by qn(s, a) is defined as the

expected return while starting from state s , taking action a and following policy m afterwards.
qn(s, a) = Eﬁ[Gt | St =5, At = a| (7.3)

The State Transition Probability p(s',r | s, a) is defined as the probability of reaching state s’

and receiving a reward r after taking action a in state s. In other words, it defines the dynamics of

the environment.

p(s,r|s,a) = Pr{St= s', th r | St_1 =5, At_1= a} (7.4)

The Bellman Equation for value function vn(s) relates the value of a state to the value of the
successor state. It is given by

v (s) = Xm(als) X p(s,rls,a)[r + yv_(s] (7.5)

a s'r

The Bellman Optimality Equation for optimal action value g, relates the action values for an
optimal policy T,

q.(s,a) = X p(srls,a)r+ ymax q (s, a)] (7.6)

s'r *

The Bellman Optimality Equation is used as an update step in many algorithms[43] which seek

to find the best action to be taken in a particular state using the action value function.
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7.2 Algorithms

In Classical RL , initially the algorithms developed used Dynamic Programming like Value
Iteration, Policy Iteration [44] in which the dynamics of the environment or state transition
probability is known. More recently, the trend towards making the agent Tabula Rasa i.e with no
previous knowledge about environment, gave rise to algorithms like Monte Carlo and Temporal
Difference Learning [35] but these algorithms used tabular data structures to store state or action
values which becomes infeasible as the number of possible actions and states grow, the

phenomenon is termed as the “Curse of Dimensionality” .

To avoid this problem, use of function approximators was introduced, these function
approximators were used to approximate state or action value functions depending on the on
policy data recorded. Advancing forward, after the advancements in neural networks research
and due to their universal approximation property[45], neural networks began to be used as

function approximators and this gave rise to the field of Deep Reinforcement Learning.

In Deep RL, one of the first algorithms to gain fame was DQN or Deep Q Networks [46], which
displayed human level gameplay on Atari games. After this, many updates to DQN Algorithm
came in the form of Deep Recurrent DQN[47], Dueling DQNJ[48], Double DQN[49], and

Rainbow DQN][50] to name a few, each displaying better results in some sector of problems.

DQN was developed for discrete action spaces and therefore was not feasible to use in tasks
with continuous action spaces. This led to the development of policy gradient methods like
TRPO[51], DDPG[52], PPO[53], SAC[54] etc. which use policies to map states and actions and

iteratively update those policies to achieve better results.

In our case, the DRL Agent needs to tune the parameters of the Super Twisting Controller.
Therefore, we have to work on continuous state and action spaces and so we choose to use the

DDPG Algorithm for this task.
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7.2.1 Deep Deterministic Policy Gradients
DDPG is a model-free, off-policy actor-critic algorithm which uses deep function approximators
that can learn policies in high-dimensional, continuous action spaces [52]. The algorithm is

described below followed by the description of key features.

Algorithm 1: Deep Deterministic Policy Gradients

Randomly initialize critic network Q(s, a | GQ) and actor u(s | GQ) with weights 6% and 8",
Initialize target network Q' and p' with weights GQ' — GQ, Gpl — 0"
Initialize replay buffer R
for episode =1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,T do

Select action a = u(st| 6“) + N . according to the current policy and exploration noise

Execute action a, and observe reward T, and observe new state S 1
Store transition (s, a,r,s )inR
t t t t+1

Sample a random minibatch of N transitions (si, a,r, si+1) from R

Sety, = 7.+ YQ'(s,, , (s, | 0169

Update critic by minimizing the loss : L = %E (yi — Q(si, al,IGQ))2
i

Update the actor policy using the sampled policy gradient:

v, u(sl6")’

oL ¢
Veu] ~ N§V0Q(S,a|e )|s=si,a=ll(5i) 0

Update the target networks : 8¢ « 0%+ 1 - T)GQ'
0" < '+ (1 - e"
end for

end for
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Key Features

Actor Critic Approach : To implement Q-learning on continuous action spaces, we need

to optimise a atevery step to find the greedy policy, which is very slow for large
unconstrained function approximators. So, DDPG uses an actor-critic approach based on

the DPG Algorithm[55]. It consists of an actor function u(s|6“) which deterministically
maps states to specific actions and the critic function Q(s, a) which estimates the action
value and learns using the Bellman Equation (Eqn 7.6).

Batch Learning : Introducing non-linear function approximators is essential for
generalising on large state spaces but they don’t guarantee convergence. Also, for making
the algorithm hardware efficient, it’s better to learn in batches than online. So, similar to
NFQCA[56], DDPG also uses batch learning for stability, which is intractable for large
networks.

Replay Buffer : Most of the optimisation algorithms in Deep Learning assume that the
samples are independent and identically distributed but that’s not the case while learning
as the samples are temporally correlated. So, like DQN, DDPG uses a replay buffer,

which stores the tuples (St, a,r,s,. 1) and at each timestep, a mini-batch is uniformly

sampled from the buffer to update the actor and critic networks.

Target Networks : While computing the loss function for updating the critic, using the
same critic network to provide target value can lead to divergence. Therefore, similar to
DQN, DDPG uses target networks for both actor and critic whose weights are updated
using “soft” target updates unlike directly copying weights [46]. The weights of target
network slowly track the learned network using 8' « t0 + (1 — 1)8'witht K 1
Batch Normalization : While learning from low-dimensional features, different
components may have different physical units, which can increase difficulty in learning.
Using the Deep learning technique of Batch Normalization[57], each dimension of the
samples in a mini-batch are normalized to have unit mean and variance which removes
the need to manually ensure if the units are within a set range.

Exploration : DDPG uses an additional noise process N which is added to the actor

policy to get the exploration policy u’(st) = u(st\ et” ) +N ,
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Chapter 8

RL Implementation

We have implemented DRL in combination with STC in simulation and on hardware. A simple
pendulum analogy is used to model the lateral slosh dynamics for a container with a mobile base
moving in a straight line [bandopadhyay] as shown in Fig 8.1. The combined system has 2
Degrees of Freedom, the displacement of the container, y and the lateral slosh angle, 8 but only
the displacement of the container is controllable giving rise to an underactuated system. The

system’s dynamical equations derived using Euler-Lagrange’ formulation[] are :
. , .2
My + mslcosee — msl 0 sind =u+d (8.1)

mslcosej/' + mslzé + 0+ msglsine =0 (8.2)

Where, M : Total Mass of the system
m: Mass of displaced liquid
[ : Length of pendulum
¢ : Viscous Damping Coefficient
u : Horizontal Force Applied on the container

: Gravitational Acceleration

Q. 09

: External Disturbance

Fig 8.1 Pendulum Analogy for Lateral Slosh Control Problem
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8.1 Parameter Estimation

To model the hardware prototype using the simple pendulum model, we need to estimate the

parameters required in the dynamics[Eqn 8.1,Eqn 8.2] and controller equations.

For this, we have used the Translational Excitation and Quick Stop strategy[58]. The AGV is
given a constant speed and stopped suddenly, emulating an impulsive behaviour. After getting
stopped quickly, the motion of the sloshing liquid will be free under-damped oscillations. This

motion is assumed to be viscously damped and is given by
—lw t
¢ = Ce P cos(\/1 — (Zu)nt + §) (8.3)

with initial condition 8 = 0 at quick stop (t = 0).

The data was recorded for 34 runs, which is shown in Fig 8.2. To obtain the natural frequency
and Viscous Damping Coefficient, the damped frequency and the decay of the resulting
waveform were used. The damped frequency of oscillation was calculated by taking the Fast
Fourier Transform of the signal. As can be seen in Fig 8.3 , the FFT of all the individual runs

have peak at nearly the same frequency, the final damped frequency w p is the average of all the

frequencies, which came out to be 2.74 Hz. The length of the pendulum can be found from the

natural frequency W using

o =/ (8.4)

Slosh Data (with Sudden Stops)

Fig 8.2 Slosh Data recorded after quick stop for 34 runs
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Fig 8.3 FFT of ¢ signal for all the runs

After Calculation, the final values calculated are listed in Table 8.1

Parameters Value

Slosh mass (ms) 0.375 kg

Total Mass (M) 2.7kg

Length of Pendulum (1) 0.0328 m
Gravitational Acceleration (g) 9.8 m/s?

Viscous Damping Coefficient (c) 0.000279 kgm?/sec

Table 8.1 Estimated Parameters for AGV
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Using the estimated parameters in the simulation dynamics, the DDPG Agent was trained for 10
thousand episodes using the framework shown in Fig 8.4. An NVIDIA GeForce GTX 1080
machine with 12GB RAM and 16 core CPU is used for the entire processing. The agent was
subjected to 10 test runs for predicting the STC parameters with random starting states within a
predefined range, the output parameters were nearly identical with the largest change being

3.94%. The predicted parameters after training that gave the best results were
[C1, K1, K2] = [2.1309, 1.6884, 0.9694]

The results for the same are shown in Fig 8.5.

DRL AGENT
AGENT POLICY
— POLICY UPDATE AL
[C2, K1, K2]
STATE
N DDPG
[x,%,0,0] STC PARAMETERS
AGV POSITION X
AGV VELOCITY X
SLOSH ANGLE 0 REWARD STC
SLOSH ANGLE VELOCITY @
ENVIRONMENT V_DES
[AGV]
Fig 8.4 Overall DRL Framework
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Fig 8.5 (a) Position of AGV vs time, (b) Slosh angle vs time
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Fig 8.6 (a) Rate of change of Slosh angle vs time, (b) Force output vs time
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Fig 8.7 Hardware implemented results (a) Position of AGV, (b) Force output of AGV

45



Chapter 9

Conclusion

An AGV prototype is built which can be used as a research testbed to implement different
control algorithms for research in Slosh Control. The prototype is capable of measuring 2-D
slosh, navigate in 2-D Arena, implementing velocity control, and implement compute intensive
control algorithms on hardware. A slosh measurement system is developed using non-invasive
capacitive water level sensing, which records the slosh in 2-D. The system is modelled using a
simple pendulum based model and the model parameters are estimated on hardware using the
given procedure ,which come out in the desired range. Using the estimated model, a Super
Twisting Controller is implemented which provides robustness to the control system. A Deep
Reinforcement Learning Agent is designed using Deep Deterministic Policy Gradient Algorithm
to tune the parameters of STC which is a first of its kind implementation of DRL in the area of
slosh control. The DRL Agent provides appreciable results in the simulation which when

implemented on hardware results in a performance

In Future, the DRL agent can be trained directly on hardware to eradicate the errors due to
modelling and different algorithms like SAC, PPO can be implemented which have shown better

results on hardware tasks.
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